

2012

GETTING STARTED WITH CODE ON TIME
 Got data? Generate modern web apps in minutes. Learn to create sophisticated web apps with Code On Time
application generator for ASP.NET, Azure, DotNetNuke, and SharePoint.

1 | P a g e

Contents
Creating an App ... 3

Using the Project Designer .. 12

Project Browser ... 13

Project Explorer ... 15

Navigate To ... 17

Creating a Three-Level Master-Detail Page .. 19

Creating the Page ... 19

Establishing Master-Detail Relationships .. 22

Rearranging Data Fields .. 28

Moving ... 28

Deleting .. 28

Adding .. 29

Designing Forms .. 32

Floating Category Data Fields ... 32

Configuring a Multi-Column Form ... 34

Custom Category Template .. 38

Configuring Charts .. 42

Creating the View ... 42

Viewing the Results .. 44

Creating Many-to-Many Fields ... 48

Changing the Child Views.. 54

Creating Calculated Fields ... 57

Creating the virtual Field.. 57

Updating the Custom Category Template .. 60

SQL Formula .. 62

Calculating Field Values Just-in-Time .. 63

SQL Business Rule ... 63

Code Business Rule .. 65

JavaScript Business Rule .. 68

Implementing a Custom Action .. 70

Adding a Custom Action ... 70

Creating the Confirmation Controller .. 71

Creating an SQL Business Rule to Handle the Action .. 75

2 | P a g e

Creating “Code” Business Rule to Handle the Action .. 77

3 | P a g e

Creating an App

Let’s create a new Web Site Factory project.

Start Code On Time web application generator and select Web Site Factory under New Project.

The next page will prompt to specify a name and programming language of the project.

Select the programming language of your choice and specify the following name:

Property Value

Name MyProject1

http://codeontime.com/learn
http://codeontime.com/blog/2012/08/creating-new-web-app/image01.png

4 | P a g e

Press Create button to create the project.

The next page allows changing the Namespace and the version of Microsoft .NET Framework. Leave the default

values and press Next.

http://codeontime.com/blog/2012/08/creating-new-web-app/image03.png

5 | P a g e

This page allows specifying the Data Provider and Connection String. Select your data provider from the list.

This tutorial uses Microsoft SQL Server database engine. If you do not have a database server,
consider installing Microsoft SQL Server 2012 Express.

Click on the button to the right of the Connection String field to open the Connection String Configuration page.

http://www.microsoft.com/sqlserver/en/us/editions/2012-editions/express.aspx
http://codeontime.com/blog/2012/08/creating-new-web-app/image05.png

6 | P a g e

If you have SQL Server Express edition, specify the following:

Property Value

Server .\SQLEXPRESS

Database Northwind

Sample Tables Northwind

To the right of Database field, click on the Create button and confirm to create the database.

To the right of the Sample Tables dropdown, press Install and confirm to populate the project database with the

Northwind dataset.

http://codeontime.com/learn/sample-applications/northwind
http://codeontime.com/blog/2012/08/creating-new-web-app/image07.png
http://codeontime.com/blog/2012/08/creating-new-web-app/image09.png

7 | P a g e

Code On Time does not offer tools to design databases. Use your favorite database management
tools, such as Microsoft SQL Server Management Studio, to work with the database schema.

Our application will have built-in user and role management system. Code On Time applications rely on the security

infrastructure available in ASP.NET.

Under Membership section, press Add and confirm to add ASP.NET Membership to the database.

You will see a confirmation when the membership has been configured.

Press OK to finish configuration of the database connection string.

http://codeontime.com/learn
http://codeontime.com/blog/2012/08/creating-new-web-app/image11.png
http://codeontime.com/blog/2012/08/creating-new-web-app/image13.png

8 | P a g e

If you are using a trial version of the application generator, the project size is limited to 10 tables or views. To select

a subset of tables for the project, click the Change button next to “All database tables and views are included in this

project”. Include the following tables: Categories, Customers, Employees, EmployeeTerritories, Order Details, Orders,

Products, Shippers, Suppliers, and Territories.

http://codeontime.com/blog/2012/08/creating-new-web-app/image15.png

9 | P a g e

Press Next twice to reach the Reporting configuration page. Enable dynamic and static reports in the application.

Hold down Shift key and press Next – this will skip directly to the Summary page. Press the Generate button to start

creation of the web application.

http://codeontime.com/blog/2012/08/creating-new-web-app/image17.png
http://codeontime.com/blog/2012/08/creating-new-web-app/image19.png

10 | P a g e

When generation is complete, the web site will open in your default browser.

http://codeontime.com/blog/2012/08/creating-new-web-app/image21.png

11 | P a g e

http://codeontime.com/blog/2012/08/creating-new-web-app/image23.png

12 | P a g e

Using the Project Designer

The Project Designer allows customizing the pages and data controllers of the web application.

To activate the Project Designer, click on a project name on the start page of the application generator.

Then, click on the Design button.

The Project Designer will open.

On the left side of the screen is the Project Browser. The right side contains the Project Explorer.

http://codeontime.com/learn/development/project-designer/starting-design-environment
http://codeontime.com/blog/2012/09/using-project-designer/image01.png
http://codeontime.com/blog/2012/09/using-project-designer/image03.png

13 | P a g e

Project Browser

The Project Browser allows navigating the project configuration elements. The tabs display lists of pages, data

controllers, user controls, commands, fields, views, and data fields.

Navigate to the properties page of an element by clicking on the link in the first column or using the context menu

option Open.

http://codeontime.com/learn/pages/overview
http://codeontime.com/learn/data-controllers/overview
http://codeontime.com/learn/data-controllers/overview
http://codeontime.com/learn/user-controls/extending-pages
http://codeontime.com/learn/data-controllers/commands/overview
http://codeontime.com/learn/data-controllers/fields/overview
http://codeontime.com/learn/data-controllers/views/overview
http://codeontime.com/learn/data-controllers/data-fields/overview
http://codeontime.com/blog/2012/09/using-project-designer/image05.png

14 | P a g e

The properties page of the project configuration element will open. The breadcrumbs in the path area above the

Project Browser show the location of the object. The tabs at the top of the page will change to reflect project

configuration elements that belong to the currently selected element.

Quickly access the Learning System article for the selected project configuration element by clicking on the question

mark icon in the top right corner.

http://codeontime.com/learn
http://codeontime.com/blog/2012/09/using-project-designer/image07.png
http://codeontime.com/blog/2012/09/using-project-designer/image09.png

15 | P a g e

The Project Explorer can be synchronized with the current Project Browser element by using the Sync command on

the action bar or pressing Ctrl+Period keyboard shortcut (“Ctrl” key and “.” key).

Project Explorer

The Project Explorer displays a logical hierarchy of project configuration elements separated into three tabs: Pages,

Controllers, and User Controls.

http://codeontime.com/learn/development/project-designer/synchronizing-with-project-explorer
http://codeontime.com/blog/2012/09/using-project-designer/image11.png
http://codeontime.com/blog/2012/09/using-project-designer/image13.png
http://codeontime.com/blog/2012/09/using-project-designer/image15.png

16 | P a g e

Double-click on a node in the Project Explorer or use the Open context menu option to display the properties page

for the relevant element.

http://codeontime.com/blog/2012/09/using-project-designer/image17.png
http://codeontime.com/blog/2012/09/using-project-designer/image19.png
http://codeontime.com/blog/2012/09/using-project-designer/image21.png

17 | P a g e

Drag project elements to change the application configuration. As an alternative, you can use Cut/Copy/Paste

options in the context menu of project configuration element nodes. These operations can be performed on

multiple selected elements of the same type.

Node names of project configuration elements can be changed using the Rename context menu option.

Navigate To

The Navigate To window will search for project configuration elements by property values as soon as you type a

sample search criteria.

The window can be activated by clicking on the Navigate To icon on the Project Explorer toolbar or pressing the

Ctrl+Comma keyboard shortcut (“Ctrl” key and “,” key).

The Navigate To window will open. Start typing search terms. Matching entries will appear as soon as you stop

typing.

http://codeontime.com/learn/development/project-designer/finding-project-configuration-elements
http://codeontime.com/blog/2012/09/using-project-designer/image23.png
http://codeontime.com/blog/2012/09/using-project-designer/image25.png
http://codeontime.com/blog/2012/09/using-project-designer/image27.png
http://codeontime.com/blog/2012/09/using-project-designer/image29.png
http://codeontime.com/blog/2012/09/using-project-designer/image31.png

18 | P a g e

Highlight a result and press OK or press Enter on the keyboard to open the properties page of the element in the

Project Browser and have it highlighted in the Project Explorer.

http://codeontime.com/blog/2012/09/using-project-designer/image33.png
http://codeontime.com/blog/2012/09/using-project-designer/image35.png

19 | P a g e

Creating a Three-Level Master-Detail Page

Let’s create a page with a three-level master-detail relationship between Customers, Orders, and Order Details

controllers.

Creating the Page

Start the Project Designer. On the toolbar of the Project Explorer, click on the New Page icon.

Enter “OrderManager” in the page Name and press OK to create a new page.

Property Value

Name OrderManager

The Order Manager page will be added to the bottom of the list of pages in the Project Explorer. Drag Order Manager

node to the right side of Home node to place it after the page.

http://codeontime.com/learn/development/project-designer/starting-design-environment
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image01.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image03.png

20 | P a g e

Switch to the Controllers tab in the Project Explorer. While holding Ctrl, select the controllers in the following order:

Customers, Orders, OrderDetails. Right-click on OrderDetails, and press Copy.

Switch back to the Pages tab. Right-click on Order Manager page node, and press Paste option. The controllers will

be instantiated as data views in separate containers on the page.

Right-click on Order Manager page node, and press View in Browser.

http://codeontime.com/learn/pages/data-views/overview
http://codeontime.com/learn/pages/containers/overview
http://codeontime.com/learn/pages/overview
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image05.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image07.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image09.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image11.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image13.png

21 | P a g e

Navigate to the Order Manager page. Three views will be available on the page, but they do not have any master-

detail relationships established between them. The three data views are completely independent from each other.

http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image15.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image17.png

22 | P a g e

Establishing Master-Detail Relationships

Switch back to the Project Designer. In the Project Explorer, drag the data field node Order Manager / c102 / view2 /

grid1 / CustomerID onto the view node Order Manager / c101 / view1. This will configure a master-detail relationship

between view2 and view1, with CustomerID as the filter field.

Next, drag the data field node Order Manager / c103 / view3 / grid1 / OrderID and drop it onto view node Order

Manager / c102 / view2.

http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image19.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image21.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image23.png
http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image25.png

23 | P a g e

On the toolbar, press Browse.

Only the Customers data view is now visible on the Order Manager page.

Select a record from the list of customers, and orders related to the selection will appear in a data view underneath.

http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image27.png

24 | P a g e

Select an order, and order details for that order will be displayed.

http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image29.png

25 | P a g e

Select a child order detail. The record will be displayed in a modal form.

http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image31.png

26 | P a g e

If a master data view enters “New” mode, the child data views will automatically become hidden.

For example, if a new customer is created, the data views Orders and Order Details will be invisible. If a new order is

created, only Order Details data view will disappear.

http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image33.png

27 | P a g e

http://codeontime.com/blog/2012/09/creating-three-level-master-detail-page/image35.png

28 | P a g e

Rearranging Data Fields

The application generator composes this view of Customers from the database.

Let’s change some of the data fields presented in the view. For example, let’s move Phone data field next to Contact

Name, remove the Region data field, and add Fax to the view.

Moving

Switch to the Project Designer. In the Project Explorer, activate the Controllers tab and expand to Order Manager /

c101 / view1 / grid1 data view node. Drag Phone data field and drop it on the right side of ContactName data field

to place it after the target.

Deleting

Right-click on Order Manager / c101 / view1 / grid1 / Region data field node, and select Delete.

http://codeontime.com/learn/development/project-designer/starting-design-environment
http://codeontime.com/blog/2012/09/rearranging-data-fields/image01.png
http://codeontime.com/blog/2012/09/rearranging-data-fields/image03.png
http://codeontime.com/blog/2012/09/rearranging-data-fields/image05.png

29 | P a g e

Adding

Expand Customers / Fields node. Drag Fax field node onto Customers / Views / grid1 node to create a data field from

the Fax field.

http://codeontime.com/blog/2012/09/rearranging-data-fields/image07.png
http://codeontime.com/blog/2012/09/rearranging-data-fields/image09.png

30 | P a g e

Switch to the Pages tab in the Project Explorer. Right-click on Order Manager page node, and press View in Browser.

The Customers grid with new column layout will be displayed. The Phone field is more conveniently placed next to

the Contact Name. The Region field has been removed. Fax has been added.

http://codeontime.com/blog/2012/09/rearranging-data-fields/image11.png
http://codeontime.com/blog/2012/09/rearranging-data-fields/image13.png
http://codeontime.com/blog/2012/09/rearranging-data-fields/image15.png

31 | P a g e

http://codeontime.com/blog/2012/09/rearranging-data-fields/image17.png

32 | P a g e

Designing Forms

Let’s customize the forms on the Order Manager page.

Floating Category Data Fields

When a customer is selected, the data item is displayed in the form view editForm1. The form data fields are

rendered top-down.

Let’s have the data fields displayed in a more compact fashion.

Switch back to the Project Designer. On the Pages tab of Project Explorer, double-click on Order Manager / c101 /

view1 / editForm1 / c1 – Customers category node.

http://codeontime.com/learn/development/project-designer/starting-design-environment
http://codeontime.com/blog/2012/09/designing-forms/image01.png

33 | P a g e

Change the Float property:

Property Value

Float Yes

Press OK to save the category. Right-click on Order Manager page node, and press View in Browser.

http://codeontime.com/blog/2012/09/designing-forms/image03.png

34 | P a g e

The data fields in Customers form view float from left to right and wrap when they reach the right side of the

browser window which makes for a more compact presentation. If the browser window is resized, the form will resize

as well.

Configuring a Multi-Column Form

http://codeontime.com/blog/2012/09/designing-forms/image05.png
http://codeontime.com/blog/2012/09/designing-forms/image07.png

35 | P a g e

The picture below shows editForm1 view of Orders data controller. Let’s use categories to organize the data fields in

multiple columns.

In the Project Explorer, right-click on Order Manager / c102 / view2 / editForm1 view node. Select New Category

context menu option.

http://codeontime.com/blog/2012/09/designing-forms/image09.png

36 | P a g e

Assign the following properties:

Property Value

Header Text Shipping Info

Description This is the shipping information.

New Column Yes

Press OK to save the category.

In the Project Explorer, expand Order Manager / c102 / view2 / editForm1 / c1 – Orders category node. Select all data

fields that start with “Ship-”. Drag the data fields onto c2 – Shipping Info category node.

http://codeontime.com/blog/2012/09/designing-forms/image11.png

37 | P a g e

Right-click on Order Manager page node and select View in Browser.

Data fields on the Orders form will be split in two columns.

http://codeontime.com/blog/2012/09/designing-forms/image13.png
http://codeontime.com/blog/2012/09/designing-forms/image15.png
http://codeontime.com/blog/2012/09/designing-forms/image17.png

38 | P a g e

Custom Category Template

The Order Details layout of editForm1 view created by the application generator is shown below.

http://codeontime.com/blog/2012/09/designing-forms/image19.png
http://codeontime.com/blog/2012/09/designing-forms/image21.png

39 | P a g e

Let’s create a custom layout for the first category in Order Details form. In the Project Explorer, right-click on Order

Manager / c103 container node, and select New Control.

Next to the User Control property lookup, activate the New User Control icon.

Assign a name to the user control.

Property Value

Name OrderDetails_CustomCategoryTemplate

Press OK to insert the new user control into the User Control property, and press OK again to save the control.

On the Project Designer toolbar, press Generate. When complete, right-click on Order Manager / c103 / control1

node, and press Edit in Visual Studio.

http://codeontime.com/blog/2012/09/designing-forms/image23.png
http://codeontime.com/blog/2012/09/designing-forms/image25.png

40 | P a g e

The template file will open in Visual Studio. On the menu, select Edit | Advanced | Format Document. Replace

everything after the <%@ Control %> element with the following:

<div style="display: none;">
 <div id="OrderDetails_editForm1_c1">
 <table>
 <tr>
 <td style="padding-right: 36px;font-weight:bold;">Product:</td>
 <td style="padding-right: 18px;">
 {ProductID}
 </td>
 <td style="padding-right: 18px;">Discount:</td>
 <td>
 {Discount}
 </td>
 </tr>
 <tr>
 <td>Unit Price:</td>
 <td>
 {UnitPrice}
 </td>
 <td>Quantity:</td>
 <td>
 {Quantity}
 </td>
 </tr>
 </table>
 </div>
</div>

Save the file.

Refresh the web browser page and select a customer, order, and order detail data rows. The first category of

editForm1 view of Order Details data controller will be rendered using the new template.

http://codeontime.com/blog/2012/09/designing-forms/image27.png

41 | P a g e

http://codeontime.com/blog/2012/09/designing-forms/image29.png

42 | P a g e

Configuring Charts

Let’s create a chart that will graphically present orders broken down by quarter.

Creating the View

Start the Project Designer. In the Project Explorer, activate the Controllers tab. Right-click on Orders / Views node, and

press New View.

Give this view the following properties:

Property Value

Id OrdersByQuarter

Type Chart

Label Orders By Quarter

Press OK to save the view.

A chart requires at least two fields. One field will represent the values, and the other will form the x-axis of the chart

that will group values by a certain criteria. A chart may have more than one field representing values.

For example, to display a chart of orders grouped by quarter, the OrderID field will represent values and OrderDate

will represent the x-axis.

In the Project Explorer, expand the Orders / Fields node. Using Ctrl key, select OrderID and OrderDate fields, and drag

them onto Orders / Views / OrdersByQuarter view node.

http://codeontime.com/learn/development/project-designer/starting-design-environment
http://codeontime.com/blog/2012/09/configuring-charts/image01.png

43 | P a g e

This will create two data fields. Double-click Orders / Views / OrdersByQuarter / OrderID data field node.

Assign the following values:

Property Value

Aggregate Count

Chart Bar (Cylinder)

Press OK to save the data field. Double-click Orders / Views / OrdersByQuarter / OrderDate data field node.

http://codeontime.com/blog/2012/09/configuring-charts/image03.png
http://codeontime.com/blog/2012/09/configuring-charts/image05.png

44 | P a g e

Assign these values:

Property Value

Data Format String MMM yyy

Chart X, Quarter

Press OK to save.

Viewing the Results

On the Project Designer toolbar, press Browse.

Navigate to the Order Manager page. Select a customer from the first data view. Use the View Selector in the top

right corner of Orders data view to switch to Orders By Quarter view.

http://codeontime.com/blog/2012/09/configuring-charts/image07.png

45 | P a g e

The chart will be displayed, showing the number of orders in each quarter filtered by the selected customer.

http://codeontime.com/blog/2012/09/configuring-charts/image09.png

46 | P a g e

If you select another customer, the orders will change to reflect the new selection.

http://codeontime.com/blog/2012/09/configuring-charts/image11.png

47 | P a g e

http://codeontime.com/blog/2012/09/configuring-charts/image13.png

48 | P a g e

Creating Many-to-Many Fields

The Northwind database features a many-to-many relationship between Territories and Employees.

The app generator will create a page for EmployeeTerritories that allows editing records directly.

EmployeeTerritories is also available as a child data view on the Employees page. Selecting an employee will reveal a

list of related territories.

http://codeontime.com/learn/sample-applications/northwind
http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image01.png
http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image03.png

49 | P a g e

Let’s create a many-to-many field on the employee edit form that will allow selecting territories in a check box list.

Each option in the list will represent a territory from the Territories table. The checkbox next to the territory name will

be checked if there is a record in the EmployeeTerritories table linking the selected employee with the territory. The

relevant EmployeeTerritories records will be inserted or deleted when the user changes the selection of checkboxes

and saves the employee record.

Start the Project Designer. In the Project Explorer, switch to the Controllers tab. Right-click on Employees / Fields

node, and press New Field.

Give this field the following values:

Property Value

Name Territories

Allow null values true

The value of this field is computed

at run-time by SQL expression.

true

Label Territories

Items Style Check Box List

http://codeontime.com/learn/development/project-designer/starting-design-environment
http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image05.png
http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image07.png

50 | P a g e

Items Data Controller Territories

Data Value Field TerritoryId

Data Text Field TerritoryDescription

Target Controller EmployeeTerritories

Press OK to save the field.

Drag Employees / Fields / Territories field node onto Employees / Views / editForm1 view node.

Double-click on Employees / Views / editForm1 / Territories data field node.

http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image09.png

51 | P a g e

Change the Columns property:

Property Value

Columns 5

Press OK to save. Switch to the Pages tab. Right-click on Employees page node, and press View in Browser.

http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image11.png

52 | P a g e

View the details for an employee. Territories field will display a comma-separated list of values associated with the

employee.

http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image13.png

53 | P a g e

Press Edit button. All territories will be rendered as a check box list.

http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image15.png

54 | P a g e

Check or uncheck several values, and press OK to save the record. Select the record to verify that the changes were

persisted.

Changing the Child Views

The Employee Territories child data view is now unnecessary.

Switch back to the Project Designer. In the Project Explorer, right-click on Employees / container2 / view4 node, and

press Delete.

http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image17.png

55 | P a g e

Drag view3 node on the left side of view2 to place it in the first position.

Right-click on Employees page node, and press View in Browser.

Select an employee from the list, and the Orders and Employees child data view tabs will appear below. The

Employee Territories child data view tab is no longer present. The picture also shows the many-to-many field

Territories in the master grid view.

http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image19.png
http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image21.png
http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image23.png
http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image25.png

56 | P a g e

http://codeontime.com/blog/2012/09/creating-many-to-many-fields/image27.png

57 | P a g e

Creating Calculated Fields

The picture below shows the Order Details form in edit mode.

Let’s create a calculated field called Extended Price that will display the extended price of the Order Details item.

Calculated fields are also known as virtual fields. The field value is not stored in the database - it is calculated at

runtime based on values of other fields in the data row.

Creating the virtual Field

Activate the Project Designer. In the Project Explorer, switch to the Controllers tab. Right-click on OrderDetails / Fields

node, and press New Field.

Assign the following values:

http://codeontime.com/learn/development/project-designer/starting-design-environment
http://codeontime.com/blog/2012/09/creating-calculated-fields/image01.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image03.png

58 | P a g e

Property Value

Name ExtendedPrice

Type Currency

Label Extended Price

Allow Query-by-Example true

Allow Sorting true

Press OK to save. Drag OrderDetails / Fields / ExtendedPrice node onto OrderDetails / Views / grid1 node to bind the

field to the view grid1.

Drag OrderDetails / Fields / ExtendedPrice node onto OrderDetails / Views / editForm1 / c1 – Order Details node to

bind the field to view editForm1.

http://codeontime.com/learn/data-controllers/fields/allow-query-by-example
http://codeontime.com/learn/data-controllers/fields/allow-sorting
http://codeontime.com/blog/2012/09/creating-calculated-fields/image05.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image07.png

59 | P a g e

Finally, drag OrderDetails / Fields / ExtendedPrice node onto OrderDetails / Views / createForm1 node.

A binding of field to a view is called a data field.

On the toolbar, press Browse and navigate to the Order Manager page. The Extended Price data field is visible in the

grid and in the form views of Order Details. However, the field is rendered as blank.

http://codeontime.com/learn/data-controllers/fields/overview
http://codeontime.com/learn/data-controllers/views/overview
http://codeontime.com/learn/data-controllers/data-fields/overview
http://codeontime.com/blog/2012/09/creating-calculated-fields/image09.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image11.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image13.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image15.png

60 | P a g e

Note that if you have a custom category template associated with the form view, then the field will not be visible

automatically. In that case, the custom category template for editForm1 needs to be updated to display the data

field.

Read the next section to learn how to include the new virtual data field in the template, or skip to the following

section discussing how to provide an SQL Formula for the field.

Updating the Custom Category Template

Switch to the Project Designer. In the Project Explorer, switch to the Pages tab. Right-click on Order Manager / c103 /

control1 node and press Edit in Visual Studio.

The template file will be opened in Visual Studio. Replace the existing code after the <%@ Control %> element

with the following:

<div style="display: none;">
 <div id="OrderDetails_editForm1_c1">
 <table>
 <tr>
 <td style="padding-right: 36px;font-weight:bold;">Product:</td>

http://codeontime.com/learn/getting-started/designing-forms
http://codeontime.com/learn/data-controllers/fields/sql-formula
http://codeontime.com/blog/2012/09/creating-calculated-fields/image17.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image19.png

61 | P a g e

 <td style="padding-right: 18px;">
 {ProductID}
 </td>
 <td style="padding-right: 18px;">Discount:</td>
 <td>
 {Discount}
 </td>
 </tr>
 <tr>
 <td>Unit Price:</td>
 <td>
 {UnitPrice}
 </td>
 <td>Quantity:</td>
 <td>
 {Quantity}
 </td>
 <td style="padding-left:18px;"><i>Extended Price:</i></td>
 <td>
 {ExtendedPrice}
 </td>
 </tr>
 </table>
 </div>
</div>

Save the file, and refresh the webpage. The Extended Price data field will be displayed in edit form.

http://codeontime.com/blog/2012/09/creating-calculated-fields/image21.png

62 | P a g e

SQL Formula

Let’s provide an SQL expression evaluated when the data rows of order details are selected from the database.

In the Project Explorer, switch to the Controllers tab and double-click on OrderDetails / Fields / ExtendedPrice node.

Change the following:

Property New Value

The value of this field is computed

at run-time by SQL expression.

true

SQL Formula

OrderDetails.UnitPrice * OrderDetails.Quantity *
(1 - OrderDetails.Discount)

Values of this field cannot be

edited

true

Data Format String c

Press OK to save the field. On the toolbar, press Browse. The Extended Price field will not be editable, and the value

will be presented when the form is rendered.

http://codeontime.com/learn/data-controllers/fields/sql-formula
http://codeontime.com/learn/data-controllers/fields/data-format-string/standard-numeric
http://codeontime.com/blog/2012/09/creating-calculated-fields/image23.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image25.png

63 | P a g e

SQL Formula provides the highest possible performance for the calculation since it is being evaluated by the

database engine. The complexity of calculated fields depends on the capabilities of the database engine. There are

numerous built-in functions that the developer can take advantage of.

Fields based on SQL Formula can be sorted and filtered with the highest possible performance as well.

Calculating Field Values Just-in-Time

Extended Price is not recalculated when a user changes values of Unit Price, Discount, or Quantity fields.

The SQL Formula of the Extended Price field is evaluated only when the data is selected from the database. If the user

makes changes in the browser window, the values will not be submitted to the server until the record is saved.

Developers can implement a server-side or client-side calculation that will be performed just-in-time as users

change the values of the formula’s base fields.

The application framework includes a business rule engine that allows implementing rules in SQL, C#/Visual Basic, or

JavaScript.

SQL and C#/Visual Basic business rules require a round-trip between the web browser and the web server. They can

look up database information and interact with external systems when necessary.

JavaScript business rules are executed in the browser and provide the highest possible performance when server-

side data is not required for calculation.

Let’s consider implementing the calculation using all three flavors of business rules. Note that the developer needs

only one of them to accomplish just-in-time calculation of Extended Price.

SQL Business Rule

In the Project Explorer, double-click on OrderDetails / Fields / ExtendedPrice node.

http://codeontime.com/learn/data-controllers/fields/allow-sorting
http://codeontime.com/learn/data-controllers/fields/allow-query-by-example
http://codeontime.com/blog/2012/09/creating-calculated-fields/image27.png

64 | P a g e

Make the following changes:

Property New Value

The value of this field is calculated by

a business rule expression.

true

Context Fields UnitPrice,Quantity,Discount

Press OK to save. Right-click on OrderDetails / Business Rules node, and press New Business Rule.

Assign these values:

Property Value

Type SQL

Command Name Calculate

Phase Execute

Script set @ExtendedPrice = @UnitPrice * @Quantity * (1 - @Discount)

http://codeontime.com/blog/2012/09/creating-calculated-fields/image29.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image31.png

65 | P a g e

Press OK to save. On the toolbar, press Browse. Select and start editing an Order Details record.

Change the value in Quantity field. Press Enter or shift the focus to a different field. The Extended Price will be

updated.

The client library executes Calculate action, which causes transfer of field values to the server. The application

framework will pass the business rule script along with the parameter values to the database engine for execution.

Then, it evaluates parameters and returns changed values to the client web browser.

SQL business rules involve client, application server, and database engine tiers. The advantage of SQL business rules

is the ability to access any database information when necessary.

Code Business Rule

The business rule can also be implemented using C# or Visual Basic.

If you have the SQL business rule created in the previous section, then you will need to delete or rename the

business rule. Double-click on OrderDetails / Business Rules / Calculate node.

Change the Command Name property:

Property Value

Command Name DoNotRun

Press OK to save. Alternatively, business rule r100 can be deleted.

http://codeontime.com/blog/2012/09/creating-calculated-fields/image33.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image35.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image37.png

66 | P a g e

Right-click on OrderDetails / Business Rules node, and press New Business Rule.

Assign these values:

Property Value

Type C# / Visual Basic

Command Name Calculate

Phase Execute

Press OK to save.

Code business rule files do not exist until the application generator has created them. On Project Designer toolbar,

press Browse.

When complete, right-click OrderDetails / Business Rules / Calculate business rule node, and press Edit Rule in Visual

Studio.

http://codeontime.com/blog/2012/09/creating-calculated-fields/image39.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image41.png

67 | P a g e

The file will be opened in Visual Studio. The entire class definition and parameters of the business rule method are

already defined.

Replace the body of the rule with the call of UpdateFieldValue method:

C#:

using System;
using MyCompany.Data;

namespace MyCompany.Rules
{
 public partial class OrderDetailsBusinessRules : MyCompany.Data.BusinessRules
 {

 [Rule("r101")]
 public void r101Implementation(int? orderID,
 string orderCustomerID, string orderCustomerCompanyName,
 string orderEmployeeLastName, string orderShipViaCompanyName,
 int? productID, string productProductName, string productCategoryCategoryName,
 string productSupplierCompanyName, decimal? unitPrice, short? quantity,
 float? discount, decimal? extendedPrice)
 {
 UpdateFieldValue("ExtendedPrice",
 Convert.ToDouble(unitPrice.Value) * quantity.Value * (1 - discount.Value));
 }
 }
}

Visual Basic:

Imports MyCompany.Data
Imports System

Namespace MyCompany.Rules

 Partial Public Class OrderDetailsBusinessRules
 Inherits MyCompany.Data.BusinessRules

 <Rule("r101")> _
 Public Sub r101Implementation(
 ByVal orderID As Nullable(Of Integer),
 ByVal orderCustomerID As String,
 ByVal orderCustomerCompanyName As String,
 ByVal orderEmployeeLastName As String,
 ByVal orderShipViaCompanyName As String,
 ByVal productID As Nullable(Of Integer),
 ByVal productProductName As String,
 ByVal productCategoryCategoryName As String,
 ByVal productSupplierCompanyName As String,
 ByVal unitPrice As Nullable(Of Decimal),
 ByVal quantity As Nullable(Of Short),
 ByVal discount As Nullable(Of Single),
 ByVal extendedPrice As Nullable(Of Decimal)
)
 UpdateFieldValue("ExtendedPrice",
 Convert.ToDouble(unitPrice.Value) * quantity.Value * (1 - discount.Value))
 End Sub

68 | P a g e

 End Class
End Namespace

Save the file, and refresh the webpage.

The same behavior as with the SQL business rule will be exhibited every time a context field is changed in the form.

The client library will make a short trip to the web server to perform the calculation. The application framework will

call the business rules class method which is linked to the business rule defined in OrderDetails data controller.

JavaScript Business Rule

If the values of the base fields are known on the client at the time when a calculation needs to be performed, then

the web server round-trip is redundant. JavaScript business rules offer an option to implement complex logic

executed by the web browser.

First, disable execution of the previously created C#/Visual Basic business rule. Double-click on OrderDetails /

Business Rules / Calculate node.

Change the Command Name property:

Property Value

Command Name DoNotRun

Press OK to save. Alternatively, business rule r101 can be deleted.

Right-click on OrderDetails / Business Rules node, and press New Business Rule.

Assign these values:

http://codeontime.com/blog/2012/09/creating-calculated-fields/image43.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image45.png

69 | P a g e

Property Value

Type JavaScript

Command Name Calculate

Phase Execute

Script [ExtendedPrice] = [UnitPrice] * [Quantity] * (1 - [Discount]);
this.preventDefault();

At runtime, the client library will automatically translate the script into the following JavaScript code:

this.updateFieldValue('ExtendedPrice',
 this.selectFieldValue('UnitPrice') *
 this.selectFieldValue('Quantity') *
 (1 - this.selectFieldValue('Discount')));
this.preventDefault();

Press OK to save. On the toolbar, press Browse. Open the form view of an order detail.

Change a value in one of the fields. Press Tab to shift focus away from the field. The Extended Price will automatically

be updated without performing a server request.

The call of the method preventDefault() will prevent the client library from processing the Calculate action on the

server.

http://codeontime.com/blog/2012/09/creating-calculated-fields/image47.png
http://codeontime.com/blog/2012/09/creating-calculated-fields/image49.png

70 | P a g e

Implementing a Custom Action

Let’s implement a custom action that will apply a discount to all line items of a specific order. Orders are stored in

the table Orders, and line items are stored in Order Details.

Adding a Custom Action

First, an action needs to be defined in the action group of a data controller.

Start the Project Designer. In the Project Explorer, switch to the Controllers tab. Right-click on Orders / Actions / ag4

(ActionBar) – Edit/Delete action group node, and press New Action.

http://codeontime.com/learn/development/project-designer/starting-design-environment
http://codeontime.com/blog/2012/09/implementing-custom-action/image01.png

71 | P a g e

Assign the following values:

Property Value

Command Name Custom

Command Argument ApplyDiscount

Header Text Apply a Discount

When Key Selected Yes

Confirmation _controller=OrderDiscount

_title=Specify a Discount

_width=500

Press OK to save the action.

The Confirmation property references a data controller called “OrderDiscount”. This data controller does not exist in

the project – we will create this confirmation data controller from scratch and have it configured to collect

the Discount value from the user. The data controller will not be based on any database table or view.

Creating the Confirmation Controller

On the Project Explorer toolbar, press the New Controller icon.

http://codeontime.com/learn/data-controllers/actions/properties/confirmation/modal-form
http://codeontime.com/learn/data-controllers/actions/properties/confirmation/modal-form
http://codeontime.com/blog/2012/09/implementing-custom-action/image03.png

72 | P a g e

Give this controller a name:

Property Value

Name OrderDiscount

Press OK to save.

Right-click on OrderDiscount / Fields node, and press New Field.

Assign the following values:

Property Value

Name CustomerCompanyName

Type String

Length 50

The value of this field is calculated by

a business rule expression.

True

Label Customer Company Name

Values of this field cannot be edited True

Press OK to save.

Add another field with these values:

http://codeontime.com/blog/2012/09/implementing-custom-action/image05.png
http://codeontime.com/blog/2012/09/implementing-custom-action/image07.png

73 | P a g e

Property Value

Name Discount

Type Single

Label Discount

Save the field.

Generate the app and select an order. On the action bar, press the Apply a Discount action.

A modal form with two empty fields, Customer Company Name and Discount, will be displayed.

Let’s populate Customer Company Name with the name of the company associated with the selected order and

initialize Discount with the average discount of the order details.

In the Project Explorer, right-click on OrderDiscount / Business Rules node, and press New Business Rule.

http://codeontime.com/blog/2012/09/implementing-custom-action/image09.png
http://codeontime.com/blog/2012/09/implementing-custom-action/image11.png

74 | P a g e

Assign the following values:

Property Value

Type SQL

Command Name New

Phase Execute

Script set @CustomerCompanyName = @Context_CustomerCompanyName

select @Discount = avg(Discount)
from "Order Details"
where OrderID = @Context_OrderID

Press OK to save the business rule.

The parameter @CustomerCompanyName refers to the CustomerCompanyName field of the confirmation data

controller.

The parameter @Context_CustomerCompanyName refers to the CustomerCompanyName field of the Orders data

controller.

The application framework will pass the script for execution to the database engine when the action Custom /

ApplyDiscount is activated by the user. The result is shown in the next screenshot.

http://codeontime.com/blog/2012/09/implementing-custom-action/image13.png

75 | P a g e

If the user clicks OK, nothing will happen. The application does not know what to do with a “Custom” action with

argument of “ApplyDiscount”.

Creating an SQL Business Rule to Handle the Action

Now that an action and controller are in place to capture the user input, a business rule needs to be created to apply

the specified discount to all OrderDetails data rows associated with the selected order.

Right-click on Orders / Business Rules node, and press New Business Rule.

Use these values:

Property Value

Type SQL

Command Name Custom

Command Argument ApplyDiscount

Phase Execute

Script -- apply discount to order details
update "Order Details"
set Discount = @Parameters_Discount
where OrderID = @OrderID

http://codeontime.com/blog/2012/09/implementing-custom-action/image15.png
http://codeontime.com/blog/2012/09/implementing-custom-action/image17.png

76 | P a g e

-- force refresh of child views
set @Result_RefreshChildren = 1

Press OK to save.

The first statement in the SQL script will update [Order Details].[Discount] column where the OrderID matches the

selected order. The value of the discount is referenced by@Parameters_Discount parameter.

The second statement instructs the client library to refresh the child data views of the master data view Orders. This

will cause Order Details data view to reflect the updated discount.

On the Project Designer toolbar, press Browse. Navigate to the Orders page and select an order. A list of related

order details will be displayed below. Take note of the discounts of the order details.

On the action bar of Orders grid view, press Apply a Discount. The confirmation modal popup will appear, displaying

the current Customer Company Name and the average discount. Enter a discount of “.25”.

http://codeontime.com/learn/data-controllers/actions/properties/confirmation/modal-form
http://codeontime.com/blog/2012/09/implementing-custom-action/image19.png

77 | P a g e

Press OK, and the specified discount will be applied to all records in Order Details table that belong to the selected

order.

Creating “Code” Business Rule to Handle the Action

Instead of using SQL, you may also create a code business rule written in C# or Visual Basic to handle the calculation.

If you have implemented the previous SQL business rule, you will need to delete it.

Right-click on Orders / Business Rules / Custom, ApplyDiscount (Sql / Execute) - r100 business rule node and

press Delete.

http://codeontime.com/blog/2012/09/implementing-custom-action/image21.png
http://codeontime.com/blog/2012/09/implementing-custom-action/image23.png

78 | P a g e

Right-click on Orders / Business Rules node and press New Business Rule.

Assign these values:

Property Value

Type C# / Visual Basic

Command Name Custom

Command Argument ApplyDiscount

Phase Execute

Save the rule. “Code” business rules do not have a script stored in the data controller definition file. A code file must

be created in the project. The application generator will create an initial “empty” business rule code file as soon as

the project is generated.

On the Project Designer toolbar, press Generate.

http://codeontime.com/blog/2012/09/implementing-custom-action/image25.png
http://codeontime.com/blog/2012/09/implementing-custom-action/image27.png

79 | P a g e

When complete, right-click on Orders / Business Rules / Custom, ApplyDiscount (Code / Execute) – r100 node and

press Edit Rule in Visual Studio.

The file will be opened in Visual Studio. The generator has created a template for the business rule. Replace the

existing code with the following:

C#:

using System;
using MyCompany.Data;

namespace MyCompany.Rules
{
 public partial class OrdersBusinessRules : MyCompany.Data.BusinessRules
 {

 /// <summary>
 /// This method will execute in any view for an action
 /// with a command name that matches "Custom" and argument that matches "ApplyDiscount".
 /// </summary>
 [Rule("r100")]
 public void r100Implementation(
 int? orderID,
 string customerID,
 string customerCompanyName,
 int? employeeID,
 string employeeLastName,
 DateTime? orderDate,
 DateTime? requiredDate,
 DateTime? shippedDate,
 int? shipVia,
 string shipViaCompanyName,
 decimal? freight,
 string shipName,
 string shipAddress,
 string shipCity,
 string shipRegion,
 string shipPostalCode,

http://codeontime.com/blog/2012/09/implementing-custom-action/image29.png

80 | P a g e

 string shipCountry)
 {
 // This is the placeholder for method implementation.
 using (SqlText applyDiscount = new SqlText(
 "update [Order Details] " +
 "set Discount = @Discount " +
 "where OrderID = @OrderID"))
 {
 applyDiscount.AddParameter("@Discount", SelectFieldValue("Parameters_Discount"));
 applyDiscount.AddParameter("@OrderID", orderID);
 applyDiscount.ExecuteNonQuery();
 }
 Result.RefreshChildren();
 }
 }
}

Visual Basic:

Imports MyCompany.Data
Imports System
Imports MyCompany.Rules

Namespace MyCompany.Rules

 Partial Public Class OrdersBusinessRules
 Inherits MyCompany.Data.BusinessRules

 ''' <summary>
 ''' This method will execute in any view for an action
 ''' with a command name that matches "Custom" and argument that matches "ApplyDiscount".
 ''' </summary>
 <Rule("r100")> _
 Public Sub r100Implementation(_
 ByVal orderID As Nullable(Of Integer), _
 ByVal customerID As String, _
 ByVal customerCompanyName As String, _
 ByVal employeeID As Nullable(Of Integer), _
 ByVal employeeLastName As String, _
 ByVal orderDate As Nullable(Of DateTime), _
 ByVal requiredDate As Nullable(Of DateTime), _
 ByVal shippedDate As Nullable(Of DateTime), _
 ByVal shipVia As Nullable(Of Integer), _
 ByVal shipViaCompanyName As String, _
 ByVal freight As Nullable(Of Decimal), _
 ByVal shipName As String, _
 ByVal shipAddress As String, _
 ByVal shipCity As String, _
 ByVal shipRegion As String, _
 ByVal shipPostalCode As String, _
 ByVal shipCountry As String)
 'This is the placeholder for method implementation.
 Using applyDiscount As SqlText = New SqlText(
 "update [Order Details] " +
 "set Discount = @Discount " +
 "where OrderID = @OrderID"
)
 applyDiscount.AddParameter("@Discount", SelectFieldValue("Parameters_Discount"))
 applyDiscount.AddParameter("@OrderID", orderID)
 applyDiscount.ExecuteNonQuery()

81 | P a g e

 End Using
 Result.RefreshChildren()
 End Sub
 End Class
End Namespace

Save the file, and refresh the web page. The Assign a Discount action will function in exactly the same way as the

version with the SQL business rule.

