

1 Working With Binary Large Objects (BLOB)

Working With Binary Large Objects (BLOB)

Modern web applications are frequently dealing with large data files of various formats

commonly referred as Binary Large Objects. In this article we will demonstrate how to

implement BLOB support in Data Aquarium Framework and Aquarium Express

applications.

Generate an Aquarium Express project from Northwind database and open the

generated web site in Visual Studio 2008 or Visual Web Developer 2008 Express

Edition. Open the default page in a web browser and selected Categories data controller

in the drop down at the top of the page.

The standard grid and form views are only displaying product category name and

description data fields. Future versions of Data Aquarium Framework will provide

automatic support for BLOB fields. We will enhance the presentation that can be

generated today to include a category picture and support uploading of new pictures as

well.

http://www.codeontime.com/ProductsDAF.aspx
http://codeontime.com/productsae.aspx
http://codeontime.com/productsae.aspx
http://www.codeontime.com/ProductsDAF.aspx

2 Working With Binary Large Objects (BLOB)

Image Handler

We will start by adding a generic handler Blob.ashx to the root of our web site. The

purpose of this handler is to deliver a category picture to a web browser in response to a

request that specifies a category ID.

Here is how the handler works.

First it verifies that there is a parameter CategoryID in the requested URL that

represents a number. If so then a picture is retrieved by SQL query executed with the

help of MyCompany.Data.SqlText utility class generated automatically for every

project. An attempt is made to determine the binary format of the picture. We are trying

to load the picture by calling the method FromStream of System.Drawing.Image class.

If attempt has failed then we will try to read the picture again with offset of 78. This is

only necessary if you are working with Northwind database, which supports one of the

older proprietary formats that were introduced by Microsoft a long time ago.

Now it is time to return the picture to a requesting browser. We identify the content type

of the picture by looking up a dictionary of image content types created by static

(shared) constructor of the generic handler. Then we write the picture into the output

stream.

The last and important step is to tell the requesting browser not to cache the output

produced by handler.

Image handler Blog.ashx written in C#:

<%@ WebHandler Language="C#" Class="Blob" %>

using System;

using System.Drawing;

using System.Drawing.Imaging;

using System.Collections.Generic;

using System.IO;

using System.Web;

3 Working With Binary Large Objects (BLOB)

using MyCompany.Data;

public class Blob : IHttpHandler

{

 public void ProcessRequest(HttpContext context)

 {

 int categoryId;

 if (Int32.TryParse(context.Request.Params["CategoryID"], out

categoryId))

 using (SqlText getPicture = new SqlText(

 "select Picture from Categories where CategoryId =

@CategoryId"))

 {

 getPicture.AddParameter("@CategoryId", categoryId);

 if (getPicture.Read() &&

!DBNull.Value.Equals(getPicture["Picture"]))

 {

 byte[] picture = (byte[])getPicture["Picture"];

 int offset = 0;

 Image img = null;

 try

 {

 img = Image.FromStream(new MemoryStream(picture));

 }

 catch (Exception)

 {

 offset = 78; // correction for Northwind image format

 img = Image.FromStream(

 new MemoryStream(picture, offset, picture.Length

- offset));

 }

 context.Response.ContentType =

ImageFormats[img.RawFormat.Guid];

4 Working With Binary Large Objects (BLOB)

 context.Response.OutputStream.Write(picture, offset,

 picture.Length - offset);

 }

 }

 context.Response.Cache.SetCacheability(HttpCacheability.NoCache);

 }

 public bool IsReusable { get { return false; } }

 public static SortedDictionary<Guid, string> ImageFormats;

 static Blob()

 {

 ImageFormats = new SortedDictionary<Guid, string>();

 ImageFormats.Add(ImageFormat.Bmp.Guid, "image/bmp");

 ImageFormats.Add(ImageFormat.Emf.Guid, "image/emf");

 ImageFormats.Add(ImageFormat.Exif.Guid, "image/exif");

 ImageFormats.Add(ImageFormat.Gif.Guid, "image/gif");

 ImageFormats.Add(ImageFormat.Jpeg.Guid, "image/jpeg");

 ImageFormats.Add(ImageFormat.Png.Guid, "image/png");

 ImageFormats.Add(ImageFormat.Tiff.Guid, "image/tiff");

 ImageFormats.Add(ImageFormat.Wmf.Guid, "image/wmf");

 }

}

Image handler Blob.ashx written in VB.NET:

<%@ WebHandler Language="VB" Class="Blob" %>

Imports System

Imports System.Web

Imports System.Drawing

Imports System.Drawing.Imaging

Imports System.Collections.Generic

5 Working With Binary Large Objects (BLOB)

Imports System.IO

Imports MyCompany.Data

Public Class Blob : Implements IHttpHandler

 Public Sub ProcessRequest(ByVal context As HttpContext) _

 Implements IHttpHandler.ProcessRequest

 Dim categoryId As Integer

 If (Integer.TryParse(context.Request.Params("CategoryID"),

categoryId)) Then

 Using getPicture As SqlText = New SqlText(_

 "select Picture from Categories where CategoryId =

@CategoryId")

 getPicture.AddParameter("@CategoryID", categoryId)

 If (getPicture.Read() AndAlso Not

DBNull.Value.Equals(getPicture("Picture"))) Then

 Dim picture As Byte() = CType(getPicture("Picture"),

Byte())

 Dim offset As Integer

 Dim img As Image = Nothing

 Try

 img = Image.FromStream(New MemoryStream(picture))

 Catch ex As Exception

 offset = 78

 img = Image.FromStream(_

 New MemoryStream(picture, offset, picture.Length

- offset))

 End Try

 context.Response.ContentType =

ImageFormats(img.RawFormat.Guid)

 context.Response.OutputStream.Write(picture, offset,

picture.Length - offset)

 End If

6 Working With Binary Large Objects (BLOB)

 End Using

 End If

 context.Response.Cache.SetCacheability(HttpCacheability.NoCache)

 End Sub

 Public ReadOnly Property IsReusable() As Boolean _

 Implements IHttpHandler.IsReusable

 Get

 Return False

 End Get

 End Property

 Public Shared ImageFormats As SortedDictionary(Of Guid, Object)

 Shared Sub New()

 ImageFormats = New SortedDictionary(Of Guid, Object)

 ImageFormats.Add(ImageFormat.Bmp.Guid, "image/bmp")

 ImageFormats.Add(ImageFormat.Emf.Guid, "image/emf")

 ImageFormats.Add(ImageFormat.Exif.Guid, "image/exif")

 ImageFormats.Add(ImageFormat.Gif.Guid, "image/gif")

 ImageFormats.Add(ImageFormat.Jpeg.Guid, "image/jpeg")

 ImageFormats.Add(ImageFormat.Png.Guid, "image/png")

 ImageFormats.Add(ImageFormat.Tiff.Guid, "image/tiff")

 ImageFormats.Add(ImageFormat.Wmf.Guid, "image/wmf")

 End Sub

End Class

If you navigate to this handler in a web browser then a blank page will be displayed.

Specify CategoryID parameter in a browser URL and a corresponding image will show

up.

7 Working With Binary Large Objects (BLOB)

Displaying Picture From Database in Form View

Create page Categories.aspx in the root of your web site and enter the page markup as

follows.

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master"

AutoEventWireup="false"

 CodeFile="Categories.aspx.vb" Inherits="Categories" Title="Categories" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head" runat="Server">

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="Header1Placeholder"

runat="Server">

 Categories

</asp:Content>

<asp:Content ID="Content3" ContentPlaceHolderID="Header2Placeholder"

runat="Server">

 Northwind

</asp:Content>

<asp:Content ID="Content4" ContentPlaceHolderID="BodyPlaceholder"

runat="Server">

 <div id="CategoryList" runat="server" />

 <aquarium:DataViewExtender ID="CategoriesExtender" runat="server"

8 Working With Binary Large Objects (BLOB)

 Controller="Categories" TargetControlID="CategoryList" />

 <div id="Categories_editForm1" style="display: none">

 {CategoryName}

 {Description}

 <img src="Blob.ashx?CategoryID={CategoryID:d}" alt="Category"

 style="height: 120px; border: 0px" />

 </div>

</asp:Content>

This page is based on standard master page MasterPage.master included in the

generated project. Our page declares CategoryList element as a placeholder for

categories and CategoriesExtender, which is responsible for making sure that the view

will be rendered there.

Then there is also template Categories_editForm1 for editForm1 view that must be

applied when the view is to be rendered on this page by data controller Categories. The

template is not displayed in the page. Read about custom form templates to better

understand form and grid template capabilities of the framework.

Template instructs client-side JavaScript component Web.DataView to substitute

CategoryName and Description with corresponding markup that would otherwise be

rendered if there was no template.

There are also two references to CategoryID that are included into URLs pointing to

Blob.ashx generic handler. Both references are formatted as CategoryID:d. The letter

following the colon is a format string that will force Web.DataView to take the

corresponding field value and format the value with java script String.format method

call, which looks like String.format('{0:d}',v) where v is a value. This inserts only the

string presentation of category ID instead of the complicated markup that would have

been rendered otherwise. That makes it possible to use ID in the URL that is passed to

the action handler.

http://blog.codeontime.com/2008/08/custom-templates-for-ajax-forms-in-data.html
http://blog.codeontime.com/2008/09/custom-templates-for-ajax-grids-in-data.html
http://msdn.microsoft.com/en-us/library/bb397701.aspx

9 Working With Binary Large Objects (BLOB)

Open Categories.aspx in a web browser and select any category. A view similar to the

one in the screen shot will be presented. Click on the category picture and a full size

image will open in a new web browser window.

If your application is not dealing with images then you can get rid of the img element in

the template and have it replaced with text click to download or some other phrase.

Uploading Picture to Database

Let's implement support for picture uploading, which will not be any different if you are

dealing with other file formats.

Add web form Uploader.aspx to the root of our web site and make the following

changes.

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Uploader.aspx.vb"

 Inherits="Uploader" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

10 Working With Binary Large Objects (BLOB)

<head id="Head1" runat="server">

 <title>Uploader</title>

 <style type="text/css">

 body, input

 {

 font-family: Tahoma;

 font-size: 8.5pt;

 margin: 2px;

 }

 </style>

 <script type="text/javascript">

 function uploadSuccess(){

 parent.window.Web.DataView.showMessage(

 'Congratulations! Category picture has been uploaded

successfully.')

 parent.window.Web.DataView.find('CategoriesExtender').goToPage(-1);

 }

 </script>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <div id="StartUpload" runat="server">

 Click

 <asp:LinkButton ID="ShowUploadControls" runat="server"

Text="here"

 OnClick="ShowUploadControls_Click" />

 to upload a category image.

 </div>

 <div id="UploadControls" runat="server" visible="false">

 <asp:Button ID="Submit" runat="server" Text="Submit"

 OnClick="Submit_Click" />

 <asp:FileUpload ID="FileUpload1" runat="server" Width="300px" />

11 Working With Binary Large Objects (BLOB)

 </div>

 </div>

 </form>

</body>

</html>

The body of the form has two div elements. The first contains a link that is supposed to

display upload controls to user when clicked. The upload controls are hidden by default.

These controls are FileUpload1 control and Submit button. There is also a java script

function uploadSuccess that we will discuss a little bit later.

Here is how a C# code-behind of the page looks:

using System;

using System.Web;

using MyCompany.Data;

public partial class Uploader : System.Web.UI.Page

{

 protected void ShowUploadControls_Click(object sender, EventArgs e)

 {

 UploadControls.Visible = true;

 StartUpload.Visible = false;

 }

 protected void Submit_Click(object sender, EventArgs e)

 {

 if (FileUpload1.HasFile)

 using (SqlText updatePicture = new SqlText(

 "update Categories set Picture=@Picture where CategoryID =

@CategoryID"))

 {

 updatePicture.AddParameter("@Picture",

FileUpload1.FileBytes);

12 Working With Binary Large Objects (BLOB)

 updatePicture.AddParameter("@CategoryID",

Request.Params["CategoryID"]);

 updatePicture.ExecuteNonQuery();

 }

 UploadControls.Visible = false;

 StartUpload.Visible = true;

 ClientScript.RegisterClientScriptBlock(typeof(Uploader), ClientID,

 "uploadSuccess();", true);

 }

}

VB.NET version of the same code-behind class is presented here:

Imports System

Imports System.Web

Imports MyCompany.Data

Partial Class Uploader

 Inherits System.Web.UI.Page

 Protected Sub ShowUploadControls_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles ShowUploadControls.Click

 UploadControls.Visible = True

 StartUpload.Visible = False

 End Sub

 Protected Sub Submit_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Submit.Click

 If (FileUpload1.HasFile) Then

 Using updatePicture As SqlText = New SqlText(_

 "update Categories set Picture=@Picture " + _

 "where CategoryID = @CategoryID")

 updatePicture.AddParameter("@Picture", FileUpload1.FileBytes)

13 Working With Binary Large Objects (BLOB)

 updatePicture.AddParameter("@CategoryID",

Request.Params("CategoryID"))

 updatePicture.ExecuteNonQuery()

 End Using

 UploadControls.Visible = False

 StartUpload.Visible = True

 ClientScript.RegisterClientScriptBlock(_

 Me.GetType(), ClientID, "uploadSuccess();", True)

 End If

 End Sub

End Class

Event handler ShowUploadControls_Click simply displays Submit button and

FileUpload1 file upload control.

Event handler Submit_Click writes the submitted file to the database with the help of

utility class MyCompany.Data.SqlText that we have used previously. You can use your

own favorite data access controls including standard ADO.NET classes. Then the

visibility of web controls is reversed. The last step is to render a call to java script

function uploadSuccess defined in the markup of Uploader.aspx web form. This method

will execute as soon as the page is loaded in a browser window.

Let's take a closer look at this function.

<script type="text/javascript">

function uploadSuccess(){

 parent.window.Web.DataView.showMessage(

 'Congratulations! Category picture has been uploaded

successfully.')

 parent.window.Web.DataView.find('CategoriesExtender').goToPage(-1);

}

</script>

14 Working With Binary Large Objects (BLOB)

This function reaches out to a parent of a browser window and uses

Web.DataView.showMessage method. Then it finds CategoriesExtender java script

component and asks it to refresh itself.

If you do open this page in a web browser then there is no parent window and the script

will report an error when you upload a file. We intend to use this script in an iframe

element that we will incorporate into the Categories_editForm1 template to provide

smooth user experience.

Let's return back to Categories.aspx for a minute and change the template for

editForm1 as follows.

<div id="Categories_editForm1" style="display: none">

 {CategoryName}

 {Description}

 <img src="Blob.ashx?CategoryID={CategoryID:d}" alt="Category"

 style="height: 120px; border: 0px" />

 <iframe src="Uploader.aspx?CategoryID={CategoryID:d}"

 style="width: 400px; height: 30px; margin-top: 4px"

 frameborder="0" scrolling="no"></iframe>

</div>

We have inserted iframe element at the end of the template. The source of the iframe is

referring to Uploader.aspx and specifies a category ID in the URL of the src attribute.

Open Categories.aspx in a web browser and start creating new category.

15 Working With Binary Large Objects (BLOB)

View createForm1 is presented. Enter category name and description and click OK

button. Select the new category in the grid view. There is no picture defined for My

Category yet, which will result in a missing image icon displayed under category

description.

16 Working With Binary Large Objects (BLOB)

Click on the link displayed in the iframe under the image. Submit button and

FileUpload1 are visible now. Select a picture for the category.

Click on Submit button and the uploaded picture will be displayed under category

description data field.

17 Working With Binary Large Objects (BLOB)

The picture has been stored to the database by Uploader.aspx and retrieved by

Blob.ashx generic handler when CategoriesExtender instance of java script

Web.DataView class has refreshed presentation in response to uploadSuccess java

script function call.

Also, notice a yellow bar at the top of the page. This message has been also displayed by

uploadSuccess, which has taken advantage of Web.DataView.showMessage method

that creates a static message bar that stays at the top of the page even if you scroll the

page in a browser.

Any subsequent action in user interface will hide the message bar automatically. The

same facility is used by Web.DataView component to report data update errors or any

other important messages that occur in a lifecycle of the views.

18 Working With Binary Large Objects (BLOB)

Does This Work With All Browsers?

This technique does work with all modern browsers. Here is the same page displayed in

Google Chrome.

