

2010

USER GUIDE
 Conversion and Validation of User Input

1

Conversion and Validation of User Input
Code On Time applications offer powerful methods of converting and validating field values entered by

users. The unique business rules model allows elegant abstraction of the business logic required to

validate and convert user values from the user interface elements responsible for presentation.

Conversion
Let’s consider a simple conversion scenario that requires automatic conversion of a customer contact

name to upper case as soon as the user has finished typing. We will use Northwind database for this

sample.

Generate your project, activate the Designer, and select All Controllers tab. Select Customers data

controller, switch to Fields tab, and select the ContactName field. Edit the field, and enable the check

box “The value of the field is calculated by a business rule expression”.

Enter the following Code Formula if your programming language is C#:

!String.IsNullOrEmpty(contactName) ? contactName.ToUpper() : String.Empty

Visual Basic programmers should use the following instead:

IIf(Not (String.IsNullOrEmpty(contactName)), contactName.ToUpper(),

String.Empty)

Next, scroll down and enter “ContactName” in the Context Fields property. This very important step will
ensure that the business rules formula is executed as soon as user leaves the field.

2

Save the field, generate the application, and go to the Customers page. Type in a Contact Name and the

name will be converted to upper case as soon as you switch to the next field.

This works in all views without any effort on your part. Change the model, and all views will

automatically engage the business rules.

Here is the actual file that is automatically produced to implement this calculation. The code is placed in

~/App_Code/Rules/Customers.Generated.cs:

using System;

using System.Data;

using System.Collections.Generic;

using System.Linq;

using System.Text.RegularExpressions;

using System.Web;

using MyCompany.Data;

namespace MyCompany.Rules

{

 public partial class CustomersBusinessRules :

 MyCompany.Data.BusinessRules

 {

 [ControllerAction("Customers", "Calculate", "ContactName")]

 public void CalculateCustomers(string customerID,

 string companyName, string contactName, string contactTitle,

 string address, string city, string region,

 string postalCode, string country, string phone, string fax)

 {

 UpdateFieldValue("ContactName",

 !String.IsNullOrEmpty(contactName) ?

 contactName.ToUpper() :

 String.Empty);

 }

 }

}

Note that the class is partial. You can implement your own class with the same name and offer a method

that performs a more complex conversion using database or other resources required for successful

3

conversion calculation. Make sure not to change the file directly since the changes will be lost during

next code generation. Instead, use Designer to change the Code Formula of the corresponding field.

Here is the Visual Basic version of the same automatically generated method:

Imports MyCompany.Data

Imports System

Imports System.Collections.Generic

Imports System.Data

Imports System.Linq

Imports System.Text.RegularExpressions

Imports System.Web

Namespace MyCompany.Rules

 Partial Public Class CustomersBusinessRules

 Inherits MyCompany.Data.BusinessRules

 <ControllerAction("Customers", "Calculate", "ContactName")> _

 Public Sub CalculateCustomers(ByVal customerID As String, _

 ByVal companyName As String, _

 ByVal contactName As String, _

 ByVal contactTitle As String, _

 ByVal address As String, _

 ByVal city As String, _

 ByVal region As String, _

 ByVal postalCode As String, _

 ByVal country As String, _

 ByVal phone As String, _

 ByVal fax As String)

 UpdateFieldValue("ContactName", _

 IIf(Not (String.IsNullOrEmpty(contactName)), _

 contactName.ToUpper(), _

 String.Empty))

 End Sub

 End Class

End Namespace

Accessing Field Values
Many scenarios of validation may be narrowed to perform a silent conversion using the method

described above. The business rules methods offer every field of the field dictionary of the data

controller. You can use the value of any field to perform the conversion.

You can also use methods SelectFieldValue and SelectFieldValueObject and retrieve a field value

required for conversion/validation.

The first method will return the untyped object representing the value of the field or external URL

parameter. It is your responsibility to convert the value to use it in a calculation. For example:

Convert.ToString(SelectFieldValue("ContactName")).ToUpper()

The second method returns only the value objects that correspond to the fields of the data controller.

The advantage of using SelectFieldValueObject is the ability to access the “Old” and “New” values and

the availability of Modified property that tells if the field value has changed.

Convert.ToString(SelectFieldValueObject("ContactName").NewValue).ToUpper())

4

Validation
Validation is usually performed just before the standard logic of Code On Time application is about to be

executed. User has completed input and initiated a command that will result in INSERT, UPDATE, or

DELETE statement execution.

Let’s consider another example. Let’s prevent posting of invalid values to the Order Details table.

Select your project on the start page of the code generator, activate the Designer. Select the Order

Details data controller from the list of All Controllers, and edit the controller to have

“OrderDetailsBusinessRules” as business rules Handler.

Save changes, exit the designer, and generate the application.

Open the project in Visual Studio using File | Open Web Site and double click the

~/App_Code/Rules/OrderDetailsBusinessRules.cs file to open it in the editor.

5

Enter the following method if your project language is C#.

using System;

using System.Data;

using System.Collections.Generic;

using System.Linq;

using MyCompany.Data;

namespace MyCompany.Rules

{

 public partial class OrderDetailsBusinessRules : MyCompany.Data.BusinessRules

 {

 [ControllerAction("OrderDetails", "Update", ActionPhase.Before)]

 [ControllerAction("OrderDetails", "Insert", ActionPhase.Before)]

 public void ValidateInput(float? discount, short? quanity, decimal? price)

 {

 if (quanity.HasValue && quanity > 10)

 if (!Controller.UserIsInRole("Administrators"))

 throw new Exception("You are not authorized to sell more than 10 items.");

 if (discount.HasValue && discount.Value > 0.15)

 throw new Exception("The discount cannot be more than 15%.");

 if (!price.HasValue || price.Value == 0.0m)

 {

 Result.Focus("UnitPrice", "The price must be greater than zero.");

 throw new Exception("Please validate the entered unit price.");

 }

 }

 }

}

Here is the Visual Basic version:

Imports MyCompany.Data

Imports System

Imports System.Collections.Generic

Imports System.Data

Imports System.Linq

Namespace MyCompany.Rules

 Partial Public Class OrderDetailsBusinessRules

 Inherits MyCompany.Data.BusinessRules

 <ControllerAction("OrderDetails", "Update", ActionPhase.Before)> _

 <ControllerAction("OrderDetails", "Insert", ActionPhase.Before)> _

 Public Sub ValidateInput(ByVal discount As Nullable(Of Single), _

 ByVal quantity As Nullable(Of Short), _

 ByVal unitPrice As Nullable(Of Decimal))

 If (quantity.HasValue AndAlso quantity > 10) Then

 If (Not Controller.UserIsInRole("Administrators")) Then

 Throw New Exception("You are not authorized to sell more then 10 items.")

 End If

 End If

 If (discount.HasValue AndAlso discount.Value > 0.15) Then

 Throw New Exception("The discount cannot be more than 15%.")

 End If

 If (Not (unitPrice.HasValue) Or (unitPrice.HasValue AndAlso unitPrice.Value = 0))

Then

 Result.Focus("UnitPrice", "The price must be greater than zero.")

 Throw New Exception("Please validate the entered unit price.")

 End If

 End Sub

 End Class

End Namespace

6

Notice that the order of the arguments in the validation method is absolutely irrelevant. The same
method is handling both Insert and Update actions. You can implement a dedicated method to handle
each situation differently. You can use a Shared Business Rules method to create a handler for multiple
data controllers.

Run the program, select Customers | Order Details page, and try entering the order details records while
leaving Discount, Unit Price, and Quantity fields blank. The Unit Price validation will detect the problem
and will throw an error, as indicated by the message bar at the top. The inline error message, displayed
on the next page, explains the problem with more details.

