USER GUIDE

Conversion and Validation of User Input

Conversion and Validation of User Input

Code On Time applications offer powerful methods of converting and validating field values entered by
users. The unique business rules model allows elegant abstraction of the business logic required to
validate and convert user values from the user interface elements responsible for presentation.

Conversion

Let’s consider a simple conversion scenario that requires automatic conversion of a customer contact
name to upper case as soon as the user has finished typing. We will use Northwind database for this
sample.

Generate your project, activate the Designer, and select All Controllers tab. Select Customers data
controller, switch to Fields tab, and select the ContactName field. Edit the field, and enable the check
box “The value of the field is calculated by a business rule expression”.

Enter the following Code Formula if your programming language is C#:

!String.IsNullOrEmpty (contactName) ? contactName.ToUpper () String.Empty

Visual Basic programmers should use the following instead:

IIf(Not (String.IsNullOrEmpty (contactName)),
String.Empty)

contactName.ToUpper (),

Project Designer exit

0 Home = Controller: Customers = Field: ContactName

[gfieldy rtems | validators | Data Fields | Field Qutputs

Please review the field information below. Click Edit to change this record, dick Delete to delete the record, or dick Cancel/Close to return badk.

be defined as a valid SQL expression. This expression is automatically inserted in SELECT
statements when needed,

Calulated field values can be produced by business rule methods with attribute
ControllerAction. You must list the context fields that will cause the calculation. Optional
code formula is is embedded into an automatically oreated business rule and is calculated
whenever any context field iz changed.

Code Defawltis an expression written in the programming language of your project. The
expression is evaluated in an automatically created business rule to produce a default value
for the field before itis presented in the user interface.

The field must be marked as on-demand|if the field is a large binary object (BLOB) or textin
order to speed up record retrieval.

Record - View: Field -
* -indicates a required field OK] [Delete] [Cancel
General Name *
Specify field name, type, and data properties of the field. ContactMame
Server Defultis a SQL expression used as a field value when no value is provided for the Controller
field in INSERT and UPDATE statement. Customers
Indicate that the field is compuiedif the field is not physically present in the dataset Type*
produced by controller's command. Computed field requires a mandatory formulz that must String -

Allow null values,

[E]The value of this field is computed at run-time by SQL expression.
[#] The value of the field is calculated by a business rule EXpression.
Code Formula

1String.IsNullOrEmpty{contactName) ? -
contactName.TolUpper() : String.Empty

Next, scroll down and enter “ContactName” in the Context Fields property. This very important step will

ensure that the business rules formula is executed as soon as user leaves the field.

Dynamic Properties

Context fields may be listed to limit the lookup records by values of other fields of this
controller. You can list multiple fields separated by comma.

Context Fields
ContactName

Save the field, generate the application, and go to the Customers page. Type in a Contact Name and the
name will be converted to upper case as soon as you switch to the next field.

History | Permalink.
[f@ MyCompany
Home | Gustomersyzy Employees v | Categories v Customer Demographics Region ~ | Reports v | Membership

Home > Customers
Customers

Welcome admin, Today is Saturday, December 18, 2010 | My Account | Logout | Hel

LT Please fil this form and click OK button to create & new customers record. Click Cancel to retum to the previous screen.
Thi llow
:u‘ssnf;gresa e nt. ‘ Record ~ View: New Customers = ‘
See Also * -indicates a required field
= Orders New Customers
OE=ETT R Complete the form. Make sure to enter all required fields.
= Order Detail
reerbeEls Customer# * ABCDE
Company Name * My Company
Contact Name JOHN DOE

Contact Title |
Address

city

Region

Postal Code

Country

Phone

Fax

* indicates a required field

This works in all views without any effort on your part. Change the model, and all views will
automatically engage the business rules.

Here is the actual file that is automatically produced to implement this calculation. The code is placed in
~/App_Code/Rules/Customers.Generated.cs:

using System;

using System.Data;

using System.Collections.Generic;
using System.Ling;

using System.Text.RegularExpressions;
using System.Web;

using MyCompany.Data;

namespace MyCompany.Rules
{
public partial class CustomersBusinessRules
MyCompany.Data.BusinessRules

{

[ControllerAction ("Customers", "Calculate", "ContactName'")]
public void CalculateCustomers (string customerID,
string companyName, string contactName, string contactTitle,
string address, string city, string region,
string postalCode, string country, string phone, string fax)

UpdateFieldvValue ("ContactName",
!'String.IsNullOrEmpty (contactName) °?
contactName. ToUpper ()
String.Empty) ;

Note that the class is partial. You can implement your own class with the same name and offer a method
that performs a more complex conversion using database or other resources required for successful

conversion calculation. Make sure not to change the file directly since the changes will be lost during
next code generation. Instead, use Designer to change the Code Formula of the corresponding field.

Here is the Visual Basic version of the same automatically generated method:

Imports MyCompany.Data

Imports System

Imports System.Collections.Generic
Imports System.Data

Imports System.Ling

Imports System.Text.RegularExpressions
Imports System.Web

Namespace MyCompany.Rules

Partial Public Class CustomersBusiness
Inherits MyCompany.Data.BusinessRules

<ControllerAction("Customers", "Calculate", "ContactName")>
Public Sub CalculateCustomers (ByVal customerID As String,
ByVal companyName As String,
ByVal contactName As String,
ByVal contactTitle As String,
ByVal address As String,
ByVal city As String, _
ByVal region As String,
ByVal postalCode As String,
ByVal country As String,
ByVal phone As String,
ByVal fax As String)
UpdateFieldValue ("ContactName",
IIf (Not (String.IsNullOrEmpty(contactName)),
contactName.ToUpper (),
String.Empty))
End Sub
End Class
End Namespace

Accessing Field Values

Many scenarios of validation may be narrowed to perform a silent conversion using the method
described above. The business rules methods offer every field of the field dictionary of the data
controller. You can use the value of any field to perform the conversion.

You can also use methods SelectFieldValue and SelectFieldValueObject and retrieve a field value
required for conversion/validation.

The first method will return the untyped object representing the value of the field or external URL
parameter. It is your responsibility to convert the value to use it in a calculation. For example:

Convert.ToString (SelectFieldValue ("ContactName")) .ToUpper ()

The second method returns only the value objects that correspond to the fields of the data controller.
The advantage of using SelectFieldValueObject is the ability to access the “Old” and “New” values and
the availability of Modified property that tells if the field value has changed.

Convert.ToString (SelectFieldValueObject ("ContactName") .NewValue) .ToUpper ())

Validation

Validation is usually performed just before the standard logic of Code On Time application is about to be
executed. User has completed input and initiated a command that will result in INSERT, UPDATE, or
DELETE statement execution.

Let’s consider another example. Let’s prevent posting of invalid values to the Order Details table.

Select your project on the start page of the code generator, activate the Designer. Select the Order
Details data controller from the list of All Controllers, and edit the controller to have
“OrderDetailsBusinessRules” as business rules Handler.

Project Designe exit

@ Home = Controller: OrderDetails

E Commands Fields Views Categories DataFields = Action Groups — Actions

Please review data controller information below. Click Edit to change this record, dick Delete to delete the record, or dick Cancel/Close to return back,

Record - View: Controller -

General Controller Name *

Mame of data controller. OrderDetails

Indude in code generation

Miscellaneous Conflict Detection *

Spedify conflict detection strategy and optional connection string name. Specify a connection @ Overwrite Changes
string name only if the controller is working with the database other than the one selected

for this project. () compare All Values

Connection String Name

Business Rules Handler

Spedify the name of the business rules dass that can be extended to respond to the OrderDetailsBusinessRules
controller actions,

Save changes, exit the designer, and generate the application.

Open the project in Visual Studio using File | Open Web Site and double click the
~/App_Code/Rules/OrderDetailsBusinessRules.cs file to open it in the editor.

Enter the following method if your project language is CH.

using System;

using System.Data;

using System.Collections.Generic;
using System.Ling;

using MyCompany.Data;

namespace MyCompany.Rules

{

public partial class OrderDetailsBusinessRules : MyCompany.Data.BusinessRules

{

[ControllerAction ("OrderDetails", "Update", ActionPhase.Before)]
[ControllerAction ("OrderDetails"™, "Insert", ActionPhase.Before)]
public void ValidateInput (float? discount, short? quanity, decimal? price)
{
if (quanity.HasValue && quanity > 10)
if (!Controller.UserIsInRole ("Administrators"))
throw new Exception("You are not authorized to sell more than 10 items.");
if (discount.HasValue && discount.Value > 0.15)
throw new Exception ("The discount cannot be more than 15%.");
if (!price.HasValue || price.Value == 0.0m)
{
Result.Focus ("UnitPrice", "The price must be greater than zero.");
throw new Exception("Please validate the entered unit price.");

Here is the Visual Basic version:

Imports
Imports
Imports
Imports
Imports

MyCompany.Data

System
System.Collections.Generic
System.Data

System.Ling

Namespace MyCompany.Rules

Partial Public Class OrderDetailsBusinessRules

Then

Inherits MyCompany.Data.BusinessRules

<ControllerAction ("OrderDetails", "Update", ActionPhase.Before)> _

<ControllerAction ("OrderDetails", "Insert", ActionPhase.Before)> _

Public Sub ValidatelInput (ByVal discount As Nullable (Of Single),
ByVal quantity As Nullable (Of Short), _
ByVal unitPrice As Nullable (Of Decimal))

If (quantity.HasValue AndAlso quantity > 10) Then

If (Not Controller.UserIsInRole ("Administrators")) Then
Throw New Exception("You are not authorized to sell more then 10 items.")
End If
End If

If (discount.HasValue AndAlso discount.Value > 0.15) Then
Throw New Exception ("The discount cannot be more than 15%.")
End If
If (Not (unitPrice.HasValue) Or (unitPrice.HasValue AndAlso unitPrice.Value = 0))

Result.Focus ("UnitPrice", "The price must be greater than zero.")
Throw New Exception("Please validate the entered unit price.")

End If

End Sub

End Class
End Namespace

[s

Notice that the order of the arguments in the validation method is absolutely irrelevant. The same
method is handling both Insert and Update actions. You can implement a dedicated method to handle
each situation differently. You can use a Shared Business Rules method to create a handler for multiple
data controllers.

Run the program, select Customers | Order Details page, and try entering the order details records while
leaving Discount, Unit Price, and Quantity fields blank. The Unit Price validation will detect the problem
and will throw an error, as indicated by the message bar at the top. The inline error message, displayed
on the next page, explains the problem with more details.

O™) v ot T8 Mot POt~ | 3]] | 8 o =

5 Favorites | @ Order Details - v [e v Pagev Safety~v Tools~v @+

m FPlease validate the entered unit price. o

New Order Details

Please fil this form and dick OK button to create a new order details record. Click Cancel to return to the previous screen, i
New Order Details
Complete the form, Make sure to enter all required fields.

Order Customer# * Victuailles en stockd? | =i

Product Name * Uncle Bob's Organic Dried Pear50| =i

m
e e

Unit Price * | |
The price must be greater than zero.

Quantity *

Discount *

* -indicates a required field

Done €4 Local intranet | Protected Mode: Off 5 v ®100% v

