USER GUIDE: CHAPTER 1
PROJECT WIZARD

Business Logic Layer — Part 1

Business Logic Layer Page
You can choose to include database views, and affect the construction process in multiple ways. When
you are writing custom code for your application, the options available on this page are a real life saver.

Business Logic Layer

A business logic layer is a collection of data controllers representing entities of the logical domain model of your application. Business objects represent a
denormalized view of data suitable for display in user interface and coding of business rules. All possible relationships are discovered automatically for
each database table through the available foreign keys, Optional discovery depth can limit the number of fields in objects.

Advanced Options:
[7] Generate a shared business rules dass to implement global logging of actions executed by data controllers of your application.
Indude database views as read-only data controllers for reporting and customization.
[T use custom discovery depth, labeling expressions, field exdusion rules, table keys, and table field mapping to compose business objects.

[7] Generate business logic layer code objects for this application for use in business rules and custom user interface forms.

Cancel] ’ Back] [Mext

Views

The code generator will by default automatically include all database views in your project. Thee
database views are treated as reports in the application, and can be used to import data from other
database application. To enable views, check the second option on the business logic layer page.

The example below displays the database view called Customer and Supplier by City.

i;ﬁ MyCompany
Home Customers = Employees = Categories = Customer Demographics | Region = R_em =8 Membership Site Actions ~
| Home > Reports > Customer and Suppliers by City
I_/J Customer and Suppliers by City
About This is a list of customer and suppliers by dty.
This page allows customer | E— . - - — =
and supplers by city Quiick Find £ Actions Report View: Customer and Suppliers by City
management. Company Name City Contact Name Relationship
See Also Alfreds Futterkiste Berlin Maria Anders Customers
. -“'D';abEhﬁ' list of Ana Trujilo Emparedados y helados México D.F. Ana Trujilo Customers
products
= Category Sales for 1557 Antonio Moreno Tagueria México D.F. Antonio Moreno Customers
= Current Product List Around the Horn London Thomas Hardy Customers
OlieE= Aux joyeux eccésiastiques Paris Guyléne Nodier Suppliers
= Order Details Extended
= Order Subtotals Berglunds snabbksp Luled Christina Berglund Customers
= Orders Qry Bigfoot Breweries Bend Cheryl Saylor Suppliers
Blauer See Delikatessen Mannheim Hanna Moos Customers
Blondesddsl pére et fils Strasbourg Frédérique Citeaux Customers
Bdlido Comidas preparadas Madrid Martin Sommer Customers
| «Previous |Page: 1 23456 789 10 ... | Next» Ttems per page: 10, 15, 20, 25 | Showing 1-10 of 120 items | Refresh

This view combines data from the Customers and Suppliers tables. You can page, sort, and filter the
data. You can also download and export, generate an RSS feed, or create reports. However, you cannot
select or delete any records.

Working with Views

Normally, data controllers based on views do not permit data modification. If you explicitly specify a
primary key, then you will gain the ability to select data. If you choose a physical table to save to, then
you will be able to update and create data. You can also make stored procedures to update data tables
hidden by views.

Planning For Code Customization
You can choose to generate business logic layer code objects. A shared business rules class can also be
generated, useful for global logging.

Code Object CRUD Methods

When you activate code objects, you have the option of specifying different names for the CRUD object
methods. By default, method Insert allows creation of data. Method Select and SelectSingle allow the
reading of data. Method update updates the data, and method delete removes the data from the
database. The code objects will be generated in the language of your choice.

Generate business logic layer code objects for this application for use in business rules and custom user interface forms,

You can create object instances by caling ez salecfion methods of object factories, manipulate object properties, iserf, updale, and dalefe
ohjects. All objects of business logic layer are designed to support alta Anding with ObjectDataSource component.

Full suppart is provided for paging, sorting, filtering, and editing of records of any size with maximum flexibility and minimal database interaction.
Business layer objects are provided with methods that allow to create, read, update, and delete database information, Please specify the method
names.

Create method to insert a record in a database table:
Insert

Read method to retrieve all records that match specified filtering parameters:
Select

Read method to retrieve & single record matched to a primary key value:
Selectsingle

Update method to modify a record in a database table:

Update

Delete method to remove a record from a database table:
Delete

If you change the business object method names then please make sure to use these names when following instructions in online tutorials,

Using Code Objects
Code objects are stored in [YourNamespace]/Data/Objects, and can be used to write custom business
logic when you need to manipulate data.

Open the website in Visual Studio by clicking on File | Open Web Site, and select the correct folder
location. Using the solution explorer, open up App_Code/Data/Objects. If you open Customers.cs, you

can see that the class is declared as partial.

File Edit View Website Build Debug Team Data Iools Architecture Test Analyze Window Help

B A= L A N R R = R N -1 |3 | idieinter -] B8 S[i 3 b s 1 [Z2|08P i@k A,
App_Code/Data/Objects/Categories.cs X Solution Explorer ~ 1 x]
¢ MyCompany.Dats.Objects.Categories [_categoryin J2E8: a5 e 3
Flusing System; =0 & CG\.\Northwind\ - B
. m =

using System.Data; 4 | App_Code
using System.Cellections.Generic; 4 [Data

using System.Ling; 4 [Objects

] Alphabeticallistofproducts.cs
#] Categories.cs

] CategorySalesforl997.cs

Elnamespace MyCompany.Data.Objects

il

[System.Componenttadel.Data0bject (false)]

= public partial class Categories] CurrentProductList.cs
{] CustomerandSuppliersbyCity.cs
] CustomerCustomerDemo.cs
[System.Diagnostics.Debuggerrowsable(System. Diagnostics. DebuggerBrowsahlestate. Never)]] CustomerDemographics.cs =
private Nullable<int> _categoryID; R

N N #] Empl 1
[System.Diagnostics.DebuggerBrowsable (System.Diagnostics.DebuggerBrowsablestate.Never)] ﬂ rrﬂp‘nyeas €=

You can scroll down to see the Select, SelectSingle, Insert, Update, and Delete methods that have been
generated for this controller. The code will be in the programming language of your choice.

public static List<MyCompany.Data.Objects.Categories> Select(MyCompany.Data.Objects.Categories gbe)
{

return new CategoriesFactory().Select(qgbe);

}
public static MyCompany.Data.Objects.Categories SelectSingle(Nullable<int> categoryID)
{
return new CategoriesFactory().SelectSingle(categoryID);
}
public int Insert()
{
return new CategoriesFactory().Insert(this);
}
public int Update()
{
return new CategoriesFactory().Update(this);
}
public int Delete()
{
return new CategoriesFactory().Delete(this);

}

Shared Business Rules

There is a single point of entry for Update, Insert, and Delete operations, which can be used to log all
data manipulations. You can also use it to enrich data with common properties, such as Modified By,
Modified On, and etcetera.

Take a look at the shared business rule that has been generated. Open Visual Studio, and navigate to
App_Code/Rules/SharedBusinessRules.cs. You can write some code to implement some global logging.
This code will monitor and log all updates. The code is displayed below.

namespace MyCompany.Rules

{

public partial class SharedBusinessRules : MyCompany.Data.BusinessRules

protected override void AfterSqlAction(ActionArgs args, ActionResult result)
{

StringBuilder sb = new StringBuilder();

sb.AppendLine();

sb.AppendFormat(@"Controller: {0}, View: {1}, Command: {2}",

args.Controller, args.View, args.CommandName);
sb.AppendLine();
switch (args.CommandName)

case "Update":
foreach (Fieldvalue v in args.Values)
if (v.Modified)

sb.AppendFormat (
"Field '{@}' has been changed from '{1}' to '{2}'",
v.Name, v.0ldValue, v.NewValue);
sb.AppendLine();
}
break;

}
System.Diagnostics.Debug.WriteLine(sb.ToString());

Let’s see this code in action. Modify any record in the database application, and look at the Output field.
You can see that a log of this change has been added.

utput > =X

Debug |
Field 'CompanyName' has been (hanEed from 'Berglunds snabbkop***' to 'Berglunds snabbkop' '

Controller: Customers, View: gridl, Command: Update
Field 'CompanyName' has reen changed from 'Around the Horn' to 'Around the Horn#*#**'

Code OnTime LLC
http://www.codeontime.com

