

2011

COOKBOOK
 Access Control Rules

1

Table of Contents
Access Control Rules ... 2

Preparing Database for Access Control .. 3

Creating a Business Rules Class ... 4

Challenges in Implementing Access Control Rules ... 6

Restricting Access by a Single Value ... 7

Restricting Access by Multiple Values... 10

Denying Access.. 12

Restricting Access via Parameterized SQL .. 12

Implementing Restrictions for Northwind Sample ... 13

Availability ... 19

What’s Next? ... 19

Filter Expressions .. 20

2

Web app generator Code On Time now includes Access Control Rules, the first component of EASE

(Enterprise Application Services Engine). EASE components simplify implementation of enterprise-class

features in line-of-business web applications created with Code On Time and require little to no

programming at all.

Access Control Rules
Many line-of-business applications start with a simple spreadsheet that allows performing data analysis

or calculations to satisfy a specific business requirement. The spreadsheet turns in an application as

soon as business users realize that the spreadsheet must accept data input from multiple users. A

database is set up and an application user interface is built on top of it.

In some instances the entire database contents may be available to all authorized application end users.

In most situations there is a need to create a set of restrictions that would separate slices of data that

are available to individual users or users in a given business role.

For example, a web application administrator may be authorized to see the entire list of customers. A

sales person will likely be allowed to see only the customers that he or she has a relationship with.

Another example is a line-of-business web application integrated with a content management system

such as DotNetNuke or Microsoft SharePoint. The application data must be isolated by a portal or site

name. Data created by all CMS users is stored in the same database tables but under no circumstances

shall the users see each other’s records.

3

Preparing Database for Access Control
A common approach to facilitate access control implementation is to add columns reflecting ownership

of data. For example, you can implement a User ID column in each table of your database.

If more than one user has a relationship with a data record then developers opt to implement a

dedicated table linking a data record with multiple users.

A typical relational database structure provides certain natural means of establishing access control

based on database table relationships. It may be sufficient to implement just one ownership column. For

example, consider the following snippet from the Northwind sample.

Table Orders has a reference to an Employee. If a web application user is in the role of Sales then one

can make the following assumptions:

•an employee shall see only his or her orders

4

•an employee shall see only customers that have matching orders placed by the employee

•a subset of order details is naturally visible to an employee when an order is selected

•if an employee is viewing the global list of order details then only orders of her customers shall be
accessible.

The described access control rules can be implemented if we

associate each Employees table record with a User ID.

Code On Time allows integrating Microsoft ASP.NET Membership

in the generated applications. User accounts and roles are

stored in dedicated tables and user and role management APIs

are already built in ASP.NET. Let’s incorporate ASP.NET

Membership plumbing in the application database.

Change Employees table to implement two additional columns

UserID and UserName. Notice that if you are developing with a

database other than Microsoft SQL Server then you may need to

choose different types for UserID and UserName columns. For

example, MySQL implementation of ASP.NET Membership uses

int as the type of the membership user ID.

Start Code On Time and create a new Web Site Factory project.

On the Database Connection page of project wizard, press the

button next to connection string input field.

Set the database connection string and press the Add button to create membership tables and stored

procedures in the application database.

Creating a Business Rules Class
Access Control Rules in Code On Time web applications are implemented as methods in business rules

classes. These methods can be shared by all data controllers of your application or designed to address

the needs of a specific data controller. We will consider both situations and will show the real-live

examples of custom and shared access control rules.

We will start by creating a business rules class associated with Customers data controller. Click on the

Start Designer button and on the All Controllers tab, select Customers data controller. Under the

5

Business Rules section, enter “CustomersBusinessRules” in the Handler field. Press OK to persist

changes.

Click the Exit button at the top of the screen and press Next to generate the project.

The implementation of the business rule will require source code text editing and can be done in

Notepad or a development tool such as Visual Studio or Visual Web Developer.

If you do not have a development tool on your computer then click “open” under Actions column of the

Code On Time start page.

Select App_Code\Rules\CustomersBusinessRules.cs(vb) file in Windows Explorer and open the file in

Notepad.

6

If you do have a development tool listed above then

simply click “develop” link to activate the

development tool and open the same file in Solution

Explorer.

The extension of the file depends on your

programming language. Double click the file name to

open the file in the editor.

Next we will show examples in both C# and Visual

Basic demonstrating various way of implementing

access control rules.

Challenges in Implementing Access Control Rules
Modern database software makes it easy to select data. The application developer can write a data

selection statement in declarative language SQL. Such statements typically list the source tables, table

columns, and table join instructions. Data selection statements are frequently enhanced with filters to

present the data that users would like to see.

Then there is this pesky requirement to segment the data based on user identity or business role. A

developer will have to incorporate access control filters in every single data selection statement and

foresee all sorts of business requirements that may call for exceptions to some of the filters.

Because of that developers end up writing their data selection statement as stored procedures persisted

in the database. These stored procedures are fundamentally basic selection statements enhanced with

numerous checks and conditions to ensure proper access control.

Code On Time applications create SQL selection statements on-the-fly which incorporate user-defined

adaptive filters, search criteria, and sort order. Selection statements are enhanced with parameters to

prevent any possibility of an injection attack that plagues many applications with hand-written SQL.

It is impossible to write a stored procedure that will accept an unknown number of filtering and sorting

parameters to match on-the-fly SQL statements created by your Code On Time web application. Access

Control Rules are designed specifically to address the need to apply access control restrictions to

dynamic SQL statements.

Next we will show you several examples of Access Control Rules and will implement filtering based on

user identity and business role.

7

Restricting Access by a Single Value
Consider the list of customers presented in the following screenshot. We can see customers from many
different countries.

Let’s limit this list of customers to USA only and have this rule apply to all application users. Enter the
following method in the CustomersBusinessRules.cs(vb) and save the file.

C#:

using System;
using System.Data;
using System.Collections.Generic;
using System.Linq;
using MyCompany.Data;

namespace MyCompany.Rules
{
 public partial class CustomersBusinessRules : MyCompany.Data.BusinessRules
 {
 [AccessControl("Customers", "Country")]
 public void CountryFilterThatAppliesToEverybody()
 {
 RestrictAccess("USA");
 }
 }
}

8

Visual Basic:

Imports MyCompany.Data
Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Linq

Namespace MyCompany.Rules

 Partial Public Class CustomersBusinessRules
 Inherits MyCompany.Data.BusinessRules

 <AccessControl("Customers", "Country")> _
 Public Sub CountryFilterThatAppliesToEverybody()
 RestrictAccess("USA")
 End Sub
 End Class
End Namespace

The name of the method plays no role. Use your imagination to ensure that it will be easy to understand
the purpose of the method in the future. The method is decorated with AccessControl attribute .

The first parameter of the attribute constructor indicates the data controller that must take into account
this access control method. The second parameter indicates the field that will be filtered by the access
control method.

If the data controller is requested to retrieve data then it will scan the list of methods of the associated
business rules class and find those that are decorated with the matching AccessControl attribute. By
default the data controller will assume that the method is designed to allow access to data. The data
controller will invoke the method and if any calls to RestrictAccess are executed then every restriction
will be incorporated in the access control filter of SQL data selection statement. In this instance the
method will ensure that all users are restricted to see customers from USA regardless of their identity or
business role.

9

Notice that the list of options available in the adaptive filter is considerably shorter. Any user-defined

filters will be applied on top of the filters produced by Access Control Rules. The access control filter in

the example is activated in all instances of requests to retrieve a list of customers.

Access control methods can utilize any sort of logic to decide if a restriction is applicable at any given

moment. For example, a filter can prevent access to the list of customers during non-working hours. The

following access control method will allow access to the list of customers from 9 AM to 5:30 PM. If the

data is being accessed outside of this time period then a restriction by a non-exiting country is activated.

C#:

 [AccessControl("Customers", "Country")]
 private void CountryFilterThatAppliesToEverybody()
 {
 DateTime today = DateTime.Now;
 DateTime workDayBegins = new DateTime(today.Year, today.Month, today.Day, 9, 00, 00);
 DateTime workDayEnds = new DateTime(today.Year, today.Month, today.Day, 17, 30, 00);
 if (workDayBegins <= today && today <= workDayEnds)
 RestrictAccess("USA");
 else
 RestrictAccess("*****");

 }

Visual Basic:

 <AccessControl("Customers", "Country")> _
 Private Sub CountryFilterThatAppliesToEverybody()
 Dim today As DateTime = DateTime.Now
 Dim workdayBegins As DateTime = New DateTime(today.Year, today.Month, today.Day, 9, 0, 0)
 Dim workdayEnds As DateTime = New DateTime(today.Year, today.Month, today.Day, 17, 30, 0)
 If (workdayBegins <= today And today <= workdayEnds) Then
 RestrictAccess("USA")
 Else
 RestrictAccess("*****")
 End If
 End Sub

Multiple AccessControl attributes can be applied to the same method. If several methods with

AccessControl attribute are discovered then the data controller will incorporate SQL data selection

statement restrictions by concentrating them with “and” logic.

10

Restricting Access by Multiple Values
If more than one value must be used to filter out the data then simply call RestrictAccess method
multiple times and pass the values that are compatible with the data type of the field specified in
AccessControl attribute.

The following method will limit the list of customers to three specific IDs when presenting the list to
users with roles other than Administrators.

C#:

 [AccessControl("CustomerID", AccessPermission.Allow)]
 protected void NonAdministrativeUsersAreAuthorizedToSeeOnlyThreeCustomers()
 {
 if (UserIsInRole("Administrators"))
 UnrestrictedAccess();
 else
 {
 RestrictAccess("GREAL");
 RestrictAccess("OLDWO");
 RestrictAccess("THEBI");
 }
 }

Visual Basic:

<AccessControl("CustomerID", AccessPermission.Allow)> _
 Protected Sub NonAdministrativeUsersAreAuthorizedToSeeOnlyThreeCustomers()
 If UserIsInRole("Administrators") Then
 UnrestrictedAccess()
 Else
 RestrictAccess("GREAL")
 RestrictAccess("OLDWO")
 RestrictAccess("THEBI")
 End If
 End Sub

This example is using UnrestrictedAccess method to indicate that the restriction does not apply to
Administrators. Access control methods will only result in data filtering if at least one call to
RestrictAccess has been made. You can use UnrestrictedAccess method to negate the result of the access
restriction previously applied within the same method execution path.

 Here is the slightly shorter version of the method restricting access to specific customer accounts for
non-administrative users. If a user does not belong to role Administrators then no restrictions will be
imposed on the list of customers.

C#:

 [AccessControl("CustomerID", AccessPermission.Allow)]
 protected void NonAdministrativeUsersAreAuthorizedToSeeOnlyThreeCustomers()
 {
 if (!UserIsInRole("Administrators"))
 {
 RestrictAccess("GREAL");
 RestrictAccess("OLDWO");
 RestrictAccess("THEBI");
 }
 }

11

Visual Basic:

<AccessControl("CustomerID", AccessPermission.Allow)> _
 Protected Sub NonAdministrativeUsersAreAuthorizedToSeeOnlyThreeCustomers()
 If Not UserIsInRole("Administrators") Then
 RestrictAccess("GREAL")
 RestrictAccess("OLDWO")
 RestrictAccess("THEBI")
 End If
 End Sub

The screenshot shows the list of customers presented to a user with role Users.

12

Denying Access
The previous examples of access control rules are specifying AccessPermission.Allow value passed as a

parameter of AccessControl attribute. This is default permission of access control rules and can be

omitted.

There is always a possibility that a data access exception must be implemented. For example, you may

need to prevent administrators from being able to access The Big Cheese customer from USA. The

following method does just that.

C#:

 [AccessControl("CustomerID", AccessPermission.Deny)]
 public void ExceptionForAdministrators()
 {
 if (!UserIsInRole("Administrators"))
 UnrestrictedAccess();
 else
 RestrictAccess("THEBI");
 }

Visual Basic:

 <AccessControl("CustomerID", AccessPermission.Deny)> _
 Public Sub ExceptionForAdministrators()
 If (Not UserIsInRole("Administrators")) Then
 UnrestrictedAccess()
 Else
 RestrictAccess("THEBI")
 End If
 End Sub

If both “allow” and “deny” access control rules are imposing restrictions at runtime then the data

controller will compose an access control filter that may looks as the one below.

(List of “Allow” restrictions) and Not (List of “Deny” restrictions)

Restricting Access via Parameterized SQL
Our examples are using static values to compose restrictions. In real world situations you may need to

examine a user identity and figure the appropriate restriction value on the fly. It may also be impractical

to invoke RestrictAccess method for each restriction due to a very large number of such restrictions. You

can solve both problems by incorporating SQL statements in the definition of AccessControl attribute.

For example, you may want to consider restricting non-administrative accounts to see only those

customers that they have a relationship with. The following method makes an assumption that the user

with User Name = ‘user’ is a sales person and shall see only customers matching Employee ID = 1.

The total number of records in the Customers table of Northwind database is 91. If you implement the

method presented on the next page, then the user with the name “user” will only see 65 records. Make

sure to comment out or delete any previously defined access control methods described above to

prevent the cumulative effect of access control restrictions.

13

C#:

 [AccessControl("CustomerID", Sql = "select distinct CustomerID from Orders where EmployeeID
= @EmployeeID")]
 public void LimitUserToSeeOnlyHerCustomers()
 {
 if (!UserIsInRole("Administrators"))
 if (Context.User.Identity.Name == "user")
 RestrictAccess("@EmployeeID", 1);
 else
 UnrestrictedAccess();
 }

Visual Basic:

 <AccessControl("Customers", "CustomerID", _
 "select distinct CustomerID from Orders where EmployeeID = @EmployeeID", _
 AccessPermission.Allow)> _
 Public Sub LimitUserToSeeOnlyHerCustomers()
 If (Not UserIsInRole("Administrators")) Then
 If Context.User.Identity.Name = "user" Then
 RestrictAccess("@EmployeeID", 1)
 Else
 UnrestrictedAccess()
 End If
 End If
 End Sub

The data controller will inject the SQL statement defined in AccessControl attribute in the data selection

statement. The value of parameter @EmployeeID is assigned by the code in the access control method.

If you call method RestrictAccess with two arguments, then the first argument is the name of the

parameter in SQL statement of the attribute and the second argument is its value. The data controller

will compose a restriction that looks as follows.

“Customers.CustomerID” in (select distinct CustomerID from Orders where EmployeeID =

@EmployeeID)

The expression in AccessControl attribute is inserted as-is. It is up to you to ensure that the expression is

valid and will return a correct list of values.

Implementing Restrictions for Northwind Sample
Let’s implement access control rules in the Northwind sample, relying on the new columns User ID and

User Name implemented at the top of this article. We will make a few changes to the web application

design.

Run Code On Time web application generator and select your project. Click the Next button twice to

reach the Business Logic Layer page in the project wizard. Select “Generate a shared business rules class

…” check box and continue pressing Next until your reach the summary of Data Controllers in your

project.

Click Start Designer button to activate the project designer. Select Employees data controller and

activate Fields tab. Select UserID field, activate Field tab, and change its Items Style to “User ID Lookup”.

14

Enter “UserName=UserName” in the

Copy field. This instruction will ensure

that the value of UserName field from

Membership Manager will be copied

into Employees.UserName field.

Scroll down and modify the Security

section to ensure that only Administrators are able to assign/create users. The following configuration

will put no restrictions on who can see the user name and will enable business users with role

Administrators to change the user account associated with the employee.

Click OK to save your changes, and select this field in the list one more time. Activate Data Fields tab.

Change both instances of the UserID data field to reference UserName field as an alias of UserID. Select

each binding (data field) and edit Alias property under General section.

Bind UserID field to grid1 view to see the User Name associated with each record in Employees table

when viewing the list of employees. Click New | New Data Field and proceed to create a data field

(binding) linking field UserID to view grid1. Make sure to leave the field Category blank. Choose

UserName as the field’s Alias. Press OK to save.

15

Your list of data fields associated with field UserID will look as follows.

Select the Controller:Employees link in the path at the top and select UserName field on the Fields tab.

Delete both bindings of UserName field to views editForm1 and createForm1. These bindings are shown

prior to deletion in the next screenshot.

Exit the Project Designer and generate the project.

Sign in as admin/admin123% and associate the user account “user” with the employee with the last

name of Davolio.

16

Open the CustomersBusinessRules.cs(vb) file in the text editor and delete any previously defined access

control rules. Also replace the base class with MyCompany.Rules.SharedBusinessRules. This will ensure

that any global shared access control rules will be inherited in custom business rules associated with

Customers data controller.

The new version of CustomersBusinessRules is presented below.

C#:

using System;
using System.Data;
using System.Collections.Generic;
using System.Linq;
using MyCompany.Data;

namespace MyCompany.Rules
{
 public partial class CustomersBusinessRules :
 MyCompany.Rules.SharedBusinessRules
 {
 }
}

Visual Basic:

Imports MyCompany.Data
Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Linq

Namespace MyCompany.Rules

 Partial Public Class CustomersBusinessRules
 Inherits MyCompany.Rules.SharedBusinessRules

 End Class

End Namespace

Refresh the project tree in Solution Explorer if you are using Visual Studio or Visual Web Developer.

Open file ~/App_Code/Rules/SharedBusinessRules.cs(vb) in the editor. This file implements

MyCompany.Rules.SharedBusinessRules class. The data controller implementation of your web

application will create an instance of this class when preparing to process requests from any data

controllers of your project if a dedicated data controller is not available.

We will implement a collection of access control rules to perform consistent data selection restrictions

based on user identity.

17

C#:

using System;
using System.Data;
using System.Collections.Generic;
using System.Linq;
using MyCompany.Data;

namespace MyCompany.Rules
{
 public partial class SharedBusinessRules : MyCompany.Data.BusinessRules
 {

 public object UserID
 {
 get
 {
 return System.Web.Security.Membership.GetUser().ProviderUserKey;
 }
 }

 [AccessControl("EmployeeID", Sql =
 "select EmployeeID from Employees where UserID = @UserId")]
 [AccessControl("CustomerID", Sql =
 @"select distinct CustomerID from Orders
 inner join Employees
 on Orders.EmployeeID = Employees.EmployeeID
 where Employees.UserID = @UserID")]
 public void RestrictByEmployeeIdAndCustomerId()
 {
 if (!UserIsInRole("Administrators"))
 RestrictAccess("@UserID", UserID);
 }
 }
}

Visual Basic:

Imports MyCompany.Data
Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Linq

Namespace MyCompany.Rules

 Partial Public Class SharedBusinessRules
 Inherits MyCompany.Data.BusinessRules

 Public ReadOnly Property UserID As Object
 Get
 Return System.Web.Security.Membership.GetUser().ProviderUserKey
 End Get
 End Property

 <AccessControl(Nothing, "EmployeeID", _
 "select EmployeeID from Employees where UserID = @UserID")> _
 <AccessControl(Nothing, "CustomerID", _
 "select distinct CustomerID from Orders " & _
 "inner join Employees " & _
 "on Orders.EmployeeID = Employees.EmployeeID " & _
 "where Employees.UserID = @UserID")> _
 Public Sub RestrictByEmployeeIdAndCustomerId()

18

 If Not UserIsInRole("Administrators") Then
 RestrictAccess("@UserID", UserID)
 End If
 End Sub

 End Class
End Namespace

Paste the source code defined above in the ~/App_Code/Rules/SharedBusinessRules.cs(vb), save it and

try it in action by signing in as user/user123%. You will notice that this simple restriction uniformly

affects Customers, Order Details, Employees, Employee Territories, and Customer Demographics. Any

data view that has either CustomerID or EmployeeID field will be automatically restricted if the current is

not a member of Administrators role.

You can widen the reach of shared restrictions to Order Details if you simply add EmployeeID field to this

data controller and mark it as Hidden.

The command text of Order Details data controller is defined as follows. The command is a simple SQL

selection statement joining relevant tables with main table dbo.[Order Details].

select

 "OrderDetails"."OrderID" "OrderID"

 ,"Order"."CustomerID" "OrderCustomerID"

 ,"OrderCustomer"."CompanyName" "OrderCustomerCompanyName"

 ,"OrderEmployee"."LastName" "OrderEmployeeLastName"

 ,"OrderShipVia"."CompanyName" "OrderShipViaCompanyName"

 ,"OrderDetails"."ProductID" "ProductID"

 ,"Product"."ProductName" "ProductProductName"

 ,"ProductCategory"."CategoryName" "ProductCategoryCategoryName"

 ,"ProductSupplier"."CompanyName" "ProductSupplierCompanyName"

 ,"OrderDetails"."UnitPrice" "UnitPrice"

 ,"OrderDetails"."Quantity" "Quantity"

 ,"OrderDetails"."Discount" "Discount"

from "dbo"."Order Details" "OrderDetails"

 left join "dbo"."Orders" "Order" on "OrderDetails"."OrderID" =

"Order"."OrderID"

 left join "dbo"."Customers" "OrderCustomer" on "Order"."CustomerID" =

"OrderCustomer"."CustomerID"

 left join "dbo"."Employees" "OrderEmployee" on "Order"."EmployeeID" =

"OrderEmployee"."EmployeeID"

 left join "dbo"."Shippers" "OrderShipVia" on "Order"."ShipVia" =

"OrderShipVia"."ShipperID"

 left join "dbo"."Products" "Product" on "OrderDetails"."ProductID" =

"Product"."ProductID"

 left join "dbo"."Categories" "ProductCategory" on "Product"."CategoryID"

= "ProductCategory"."CategoryID"

 left join "dbo"."Suppliers" "ProductSupplier" on "Product"."SupplierID" =

"ProductSupplier"."SupplierID"

19

We will create a field that uses Order alias of

table dbo.Orders to reference

Orders.EmployeeID column in SQL Formula.

Start the Project Designer and select Order

Details data controller. Activate Fields tab

and choose New | New Field option on the

action bar. Enter the following properties for

the new field under New Field section and

save its settings by pressing the OK button.

Notice that we have wrapped the word Order

with double quotes to make sure that it will

not be misinterpreted by the database server

as SQL keyword “order”.

The field will be automatically available in all

data views of controller Order Details but

remain hidden from end users. The presence

of the field will allow it to participate in the

access control rules.

Generate the application and observe that

shared business rules now extend to Order

Details as well. Non-administrative users will

only see the order details of orders that they

have placed in the system.

Availability
The new access control rule mechanism greatly simplifies creation of consistent data segmentation in

multi-tenant applications that require isolation of database content created by users.

Access Control Rules are available in the Premium and Unlimited editions of Code On Time web

application generator. Owners of Free and Standard editions can use Filter Expressions discussed next.

What’s Next?
The Unlimited edition of Code On Time generator will soon be offering Dynamic Access Control List,

another powerful component of EASE (Enterprise Application Services Engine).

20

Dynamic Access Control List is designed to complement Access Control Rules and allow the luxury of

defining precise access control at runtime. The real world business processes make it difficult to foresee

all possible access control restrictions and most importantly exceptions to the rules at design time.

Dynamic Access Control List will maintain access control rules in the application database. The

Administrative user interface will enable dynamic creation of access control rules to respond to business

requirements at runtime without making any changes to the application code.

Filter Expressions
Developers working with Free and Standard editions can use Filter Expressions to implement access

control rules in their applications. Filter expressions are defined on the level of a view and can reference

properties of business rules classes as parameters.

For example, if you make changes to dbo.Employees table as described at the top of the article and add

UserID and UserName columns then you can filter Orders by EmployeeID. You will have to enable shared

business rules and define filter expressions on grid1 and editForm1 followed by the implementation of

EmployeeID property in the SharedBusinessRules class.

Select your project on start page of Code On Time web application generator, press the Design button,

select Orders data controller on All Controllers tab, and activate Views tab. Change both grid1 and

editForm1 views to have the following Filter Expression under the section of the property page.

Generate your project and change ~/App_Code/Rules/SharedBusinessRules.cs(vb) file to have the

following code:

C#:

using System;
using System.Data;
using System.Collections.Generic;
using System.Linq;
using MyCompany.Data;

21

namespace MyCompany.Rules
{
 public partial class SharedBusinessRules : MyCompany.Data.BusinessRules
 {

 public object UserID
 {
 get
 {
 return System.Web.Security.Membership.GetUser().ProviderUserKey;
 }
 }

 public int EmployeeID
 {
 get
 {
 using (SqlText findEmployee = new SqlText(
 "select EmployeeID from Employees where UserID = @UserId"))
 {
 findEmployee.AddParameter("@UserId", UserID);
 object id = findEmployee.ExecuteScalar();
 if (DBNull.Value.Equals(id))
 return -1;
 else
 return Convert.ToInt32(id);
 }
 }
 }

 }
}

Visual Basic:

Imports MyCompany.Data
Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Linq

Namespace MyCompany.Rules

 Partial Public Class SharedBusinessRules
 Inherits MyCompany.Data.BusinessRules

 Public ReadOnly Property UserID As Object
 Get
 Return System.Web.Security.Membership.GetUser().ProviderUserKey
 End Get
 End Property

 Public ReadOnly Property EmployeeID As Integer
 Get
 Using findEmployee As SqlText = New SqlText(_
 "select EmployeeID from Employees where UserID = @UserId")
 findEmployee.AddParameter("@UserId", UserID)
 Dim id As Object = findEmployee.ExecuteScalar()
 If DBNull.Value.Equals(id) Then
 Return -1
 Else
 Return Convert.ToInt32(id)
 End If
 End Using

22

 End Get
 End Property

 End Class
End Namespace

The value of property EmployeeID will be automatically evaluated and passed as a parameter in SQL

statements created to render data for presentation in grid1 and editForm1 views of Orders data

controller. Here is how a user associated with employee Davolio may see a list of Orders.

Class SharedBusinessRules is created to handle requests for all data controllers. This allows referencing

EmployeeID as a parameter in other data controllers including EmployeeTerritories, Employees, and

Order Details.

Filter expressions lack the flexibility of conditional restrictions available with Access Control Rules and

Dynamic Access Control List. You will need to compose filter expressions that use more than one

parameter to accomplish conditional filtering.

If you need to return more than one value for filtering purposes, then change the type of property to be

a list of values or an array. Also refer to the property values as shown in the example below.

EmployeeID in @EmployeeID

Filter expressions can be used with Access Control Rules when needed if a presentation of data in a

specific view requires additional filtering.

