

2011

COOKBOOK

1

Table of Contents
Order Form Page ... 3

Table Relationships ... 3

Objective ... 5

Sample... 5

Implementation .. 5

Generate Northwind Sample .. 5

Add Page in Designer .. 7

Add Container to Page .. 9

Add Data View for “Orders” .. 9

Add Data View for “Order Details” ... 10

Customizing “Orders” Controller .. 11

Customizing “Order Details” Controller .. 18

Total and Subtotal ... 29

Calculating Freight .. 34

Custom Form Template .. 40

CreatedBy, CreatedOn, ModifiedBy, ModifiedOn .. 50

Many-To-Many Fields ... 58

Data Controller URL Parameters ... 61

Universal Lookup... 63

Universal Lookup Database .. 63

Using the Standard Application .. 67

Modifying the Standard Application ... 69

View the Modifications ... 71

Further Modification ... 71

Role-based Security .. 74

Pages ... 74

Fields ... 77

Actions .. 78

Row-level Security ... 81

Role vs. Row-Level Security .. 81

Roles .. 82

2

Row-Level .. 82

Implementing Row-Level Security .. 82

Real World Example .. 82

Creating Roles ... 82

Creating User Accounts ... 83

Defining Role-Specific Views ... 85

Views in Action .. 88

Using OverrideWhen ... 89

Row-Level View Filters .. 90

Viewing the Results ... 91

Ideal Implementation.. 92

Custom Page Background ... 94

Creating Three Level Master Detail .. 97

Grouping Tabbed Data Views ... 103

Mixed Authentication ... 106

Chart View ... 108

Creating a Chart View ... 108

Displaying Multiple Values .. 112

Legend ... 113

Custom Charts ... 114

Standalone ASP.NET Membership Database .. 115

Learn More .. 119

3

Order Form Page

Table Relationships
We have two tables, Orders and Order Details. Both tables are from the Northwind sample database.

Orders is the master table, and Order Details is the details table.

Each Order record references a Customer, an Employee, and a Shipper. We also know the Order Date,

Required Date, Shipped Date, Freight Amount, and shipping information.

4

Order Details table features Unit Price, Quantity, Discount, and a pointer to Products. This also

references Categories and Suppliers.

We want both Orders and Order Details to be presented as shown in the picture.

5

Objective
The objective of this tutorial is to create an order detail form that allows the following:

1. Browsing a list of orders

2. Creating new orders

3. Editing existing orders

4. Calculating order freight

5. Displaying order subtotal and total

Sample
Below is a picture of the sample order form in action. You can navigate through orders using the buttons
with up and down arrows. Details of the current order will be displayed in the list inside of the order
form template. The order subtotal and total are calculated based on the total extended price of all
items. The total is composed of the freight added to the subtotal. The dynamic aggregate line
automatically updates values based on the filter selected in the order details. It shows average unit
price, sum of quantity, average discount and sum of extended price of line items.

Implementation
These are the steps we need to go through to implement an Order Form.

1. Generate sample Northwind web application

2. Add new page called Order Form

3. Customize Orders data controller

4. Customize Order Details data controller

5. Add Total and Subtotal to Orders controller

6. Calculate Freight based on order Subtotal

7. Create custom template for Order Form

The steps are explained in further detail below.

6

Generate Northwind Sample

If you don’t have the Northwind database, navigate to

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06616212-0356-46a0-8da2-

eebc53a68034&displaylang=en and download the database scripts.

Next, generate a Web Site Factory application using Code On Time Generator straight from the

Northwind database.

Give it the name of “OrderFormSample”.

For the database connection, access the connection string assistant by clicking on the link below the

field, write in your server name, and select the Northwind database.

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en

7

Make sure to enable reporting.

Enable ASP.NET membership.

And finally, enable Permalinks and Interactive History.

Leave the rest of the options with their default values and generate the application.

8

Add Page in Designer

Now it’s time to create a new page in the Designer, with the name of “Order Form”.

In Code On Time Generator, click on the name of the project, and press the Design button. Go to the All

Pages tab. On the action bar, press New | New Page. The name will be “OrderForm”, with Index of

“1005”, Title and Path of “Order Form”, and Description of “This is the order management form”.

The Style will be “Miscellaneous”, and About This Page will be the same as Description. Remove “*” from

Roles to hide the menu option for anonymous users.

9

Add Container to Page

Click on the new page in the All Pages list, and navigate to the Containers tab. On the action bar, press

New | New Container. Leave the properties as default and save the new container.

Add Data View for “Orders”

Navigate to the Data Views tab, and press New | New Data View. The Container will be “c100”,

Controller will be “Orders”, and View will be “grid1”.

10

Scroll down to Presentation properties, and uncheck “Show Details in List Mode”. This way, no details

will be shown next to master records in the list.

Don’t forget to save the record.

Add Data View for “Order Details”

On the action bar, add another data view by pressing New | New Data View. Container will be “c100”,

Controller will be “OrderDetails”, and View will be “grid1”.

11

Let’s set up a few other properties below. Disable “Show View Description”, “Show View Selector”,

“Show Pagers”, set Page Size to “300”, and enable “Show Modal Forms”.

Next, set Filter Source to be the Orders data controller from the data view “dv100”. The Filter Field will

be “OrderID”. Set Auto-Hide field to “Self”.

Close the Designer and regenerate the project. (Note: You only need to regenerate the application to

view the latest changes). When you sign into the web application, you can see that the Order Form page

has been added to the menu navigation and sitemap. Navigate to the page, and you can see the list of

orders.

12

You can browse the list of orders. Select an order, and you will view its details, including order details

below.

Customizing “Orders” Controller

Set Sort Expression

In the Designer, select the Orders controller from the list of All Controllers. Switch to the Views tab, and

select “grid1”. Edit Sort Expression field so that it reads “OrderDate desc”. The grid will be ordered in

descending order by Order Date.

Configure “Customer ID” Lookup Field

If you create a new order in the current application, the Customer Company Name needs to be selected

using the lookup. You can also use advanced search to find the records by a specific field. It would be

nice if advanced search opened by default. It would also be nice if the shipping information of the

selected customer would be pasted into the order information.

This can be done in Designer. Select the Orders data controller from the list of all controllers. Navigate to

the Fields tab, and click on the CustomerID field. Press Edit, and scroll down to the Lookup section.

Change the Data Value Field to CustomerID, and the Data Text Field to CompanyName. The Copy field

will specify which fields are copied from the selected customer into the orders record. In this field, write:

ShipName=ContactName
ShipAddress=Address
ShipCity=City
ShipRegion=Region
ShipPostalCode=PostalCode
ShipCountry=Country

13

Enable “Search on Start” and “Activate If Blank”. In Lookup window description, type “Select a

customer”.

Close the Designer, and regenerate the application. Navigate to the Order Form page in the web

application. While creating a new order, if you activate the lookup for Customer Company Name, the

lookup will be in advanced search mode.

When you select a customer from the lookup, the shipping information will be copied over as well.

14

Configure “Employee ID” Lookup Field

In the Designer, go to All Controllers. Select the Employees data controller. Switch to the Views tab.

Select “grid1”, and switch to Data Fields tab. On the action bar, press New | New Data Field. Set Field

Name to Photo, and save the field.

Now, go back to the list of All Controllers, and select the Orders data controller. Navigate to the Fields

tab and click on EmployeeID. Edit, and scroll down to the Lookup section. Enable “Activate If Blank” and

type “Select an employee” for Lookup window description.

Now in the regenerated application, when you select a customer for a new order, the Employee lookup

will automatically appear.

15

Set Default Value for “Order Date” Field

In the list of All Controllers, select the Orders controller. Switch to the Fields tab, and click on OrderDate.

Press Edit, and enter “DateTime.Now” in the Code Default field.

Save, and regenerate the application. When you create a new order, the current date will be

automatically entered into Order Date.

16

Delete Fields From “createForm1” View

Select the Orders controller from the list of All Controllers. Navigate to the Views tab, and click on

“createForm1”. Switch to the Data Fields tab. By using the dropdown menu next to ShippedDate, press

Delete.

Delete the fields ShipVia and Freight as well. Save, and regenerate the application. Below, you can see

the compact version of createForm1 without the fields ShippedDate, ShipVia, and Freight.

When the record is saved, it will be automatically selected, and Order Details will be displayed below the

Order record. It would be nice if the master record would be in edit mode right after the insertion.

17

Display Inserted Master Record in Edit Mode

In the list of All Controllers, select Orders. Navigate to the Action Groups tab, and select “ag2” from the

list. Click on the Actions tab at the top of the page. The very last action in the list is Select. Using the

context menu, edit the action and change the Command Name to “Edit”.

Save the action, and regenerate the application. When you save a new record in the Order Form page, it

will still be editable without having to press Edit.

Set Size of “Shipping” Data Fields

In the list of All Controllers, select the Orders controller. Switch to the Views tab. Select editForm1, and

switch to the Data Fields tab. Edit the Freight field, and change Columns to “5”.

18

Change the number of Columns for all shipping fields to “30”, as shown below.

Change “Ship Via Company Name” Lookup to Dropdown

Select the Orders controller from the All Controllers list. On the Fields tab, select ShipVia. Click Edit, and

scroll down to Lookup section. Change the Items Style to “Drop Down List”.

Now, go to the Categories tab and edit Orders category. Change the Floating field to “Yes”, so that the

fields will float.

If you save and regenerate the application, the Order Form page will look like the image below.

19

Customizing “Order Details” Controller

Customize “Product Id” Lookup

Select Order Details controller from the All Controllers list, and switch to the Fields tab. Click on

“ProductID”, and press Edit. Scroll down to the Lookup section. In the Copy field, write

“UnitPrice=UnitPrice”, so that the unit price of the product will be pasted into the unit price of the

order. Enable “Search on Start” and “Activate if Blank”. Lookup window description will be “Select a

product”.

Save and regenerate the application. Now, when an order is selected in the Order Form page, and you

create a new Order Detail, a prompt will immediately open requiring you to select a product.

20

When you select a product, the unit price will automatically be copied into the Order Details record.

Assign Default Values to “Quantity” and “Discount”

Now select the field Quantity, and press Edit. You can see that the standard default value is ((1)),

assigned as part of the SQL expression. In the Code Default field, type “1” and save the field. The

expression will be in either C# or VB, depending on the language of the project.

Perform the same operation on Discount field. Provide a Code Default of “0”.

21

For the Discount field, scroll down to the Presentation section, and change Data Format String to “p” to

format the field as a percentage. You can also write “{0:p}”.

Now, when you create a new Order Details and select a product, Unit Price, Quantity, and Discount are

automatically prepopulated, and Discount is formatted as a percentage.

Add “Extended Price” Field

An Extended Price field is necessary to calculate the price of each line item. In All Controllers, select

OrderDetails. Switch to Fields tab, and on the action bar, press New | New Field. Give this field the name

“ExtendedPrice”, of Type “Currency”. Enable “The value of this field is computed at run-time by SQL

Expression”, and paste in the code below in the SQL Formula field.

OrderDetails.UnitPrice*OrderDetails.Quantity*(1-OrderDetails.Discount)

22

The OrderDetails alias used in the previous expression is referring to command1 of the controller

OrderDetails. The “select” statement provides a dictionary of fields for the data controller.

Scroll down to the Presentation section of the field, set Label as “Extended Price”, and enter “c” for the

Data Format String to make sure the value appears as a currency. Enable “Values of this field cannot be

edited”, as it is a calculated field. Save the field.

To make sure that the field is displayed in the application, you need to bind the new field to the data

view. Select the field in the field list, and click on the Data Fields tab. This list is empty, as the field is not

bound to any controller. On the action bar, press New | New Data Field. Bind this data field to

“createForm1” View, and “New Order Details” Category.

23

Save, and create one more data field. This one will have View of “editForm1”, and Category of “Order

Details”.

The last data field will have View of “grid1”, with no Category.

Now, if you regenerate and select an order in the Order Form page, you can see the Extended Price field

displayed in the Order Details grid.

24

Update “Extended Price” Field

When you add a new Order Detail, Extended Price will show up as “N/A”. The calculation is executed on

the server, as part of the SQL Expression. Let’s have the field be updated to reflect changes in Product

ID, Quantity, Price, and Discount.

In the list of All Controllers, select OrderDetails controller. In the Fields tab, select ExtendedPrice field.

Press Edit, and indicate that “The value of the field is calculated by a business rule expression”. In the

Code Formula box that appears, write in the following code below:

Convert.ToDecimal(unitPrice) * Convert.ToDecimal(quantity) * (1 –

Convert.ToDecimal(discount))

This expression is reminiscent of SQL Formula, but it is written in the language that the project was

generated in. In this case, it is Visual Basic.

The calculation will be performed when the specified Context Fields are modified. These Context Fields

will be “ProductID, UnitPrice, Quantity, Discount”.

Now, when you create a new Order Details record, the Extended Price field will be updated when any of

the fields are changed. The calculation will be performed when you hit Enter on your keyboard.

25

The source of the automatically generated business rules class that performs calculation of Extended

Price is presented below.

App_Code/Rules/OrderDetails.Generated.vb

Namespace MyCompany.Rules

 Partial Public Class OrderDetailsBusinessRules
 Inherits MyCompany.Data.BusinessRules

 <ControllerAction("OrderDetails", "Calculate", "ExtendedPrice")> _
 Public Sub CalculateOrderDetails(ByVal orderID As Nullable(Of Integer), _
 ByVal orderCustomerID As String, _
 ByVal orderCustomerCompanyName As String, _
 ByVal orderEmployeeLastName As String, _
 ByVal orderShipViaCompanyName As String, _
 ByVal productID As Nullable(Of Integer), _
 ByVal productProductName As String, _
 ByVal productCategoryCategoryName As String, _
 ByVal productSupplierCompanyName As String, _
 ByVal unitPrice As Nullable(Of Decimal), _
 ByVal quantity As Nullable(Of Short), _
 ByVal discount As Nullable(Of Single))
 UpdateFieldValue("ExtendedPrice", Convert.ToDecimal(unitPrice) * _
 Convert.ToDecimal(quantity) * (1 - Convert.ToDecimal(discount)))
 End Sub

 <RowBuilder("OrderDetails", RowKind.New)> _
 Public Sub BuildNewOrderDetails()
 UpdateFieldValue("Quantity", 1)
 UpdateFieldValue("Discount", 0)
 End Sub
 End Class
End Namespace

App_Code/Rules/OrderDetails.Generated.cs

namespace MyCompany.Rules
{
 public partial class OrderDetailsBusinessRules : MyCompany.Data.BusinessRules
 {

 [ControllerAction("OrderDetails", "Calculate", "ExtendedPrice")]
 public void CalculateOrderDetails(Nullable<int> orderID, string orderCustomerID,
 string orderCustomerCompanyName, string orderEmployeeLastName, string orderShipViaCompanyName,
 Nullable<int> productID, string productProductName, string productCategoryCategoryName,
 string productSupplierCompanyName, Nullable<decimal> unitPrice, Nullable<short> quantity,
 Nullable<float> discount)
 {
 UpdateFieldValue("ExtendedPrice", Convert.ToDecimal(unitPrice) *
 Convert.ToDecimal(quantity) * (1 - Convert.ToDecimal(discount)));
 }

 [RowBuilder("OrderDetails", RowKind.New)]
 public void BuildNewOrderDetails()
 {
 UpdateFieldValue("Quantity", 1);
 UpdateFieldValue("Discount", 0);
 }
 }
}

26

Delete “Order XXXX” Fields from “grid1” View

Select OrderDetails from the list of All Controllers. Switch to the Views tab. Click on grid1, navigate to the

Data Fields tab, and delete all the fields that start with the word “Order.” This includes

OrderCustomerCompanyName, OrderEmployeeLastName, and OrderShipViaCompanyName.

Assign Aggregates

The new Order Form page is much cleaner, without unnecessary duplicate master fields in details. The

next step would be to add a summary that shows total price, average discount, total quantity, and

average price.

Select the OrderDetails controller from the All Controllers list. Switch to Views and select grid1. On the

Data Fields tab, first select Unit Price. Edit, and change Aggregate Function to “Average”.

27

Next, edit Quantity field and change Aggregate Function to “Sum”.

Edit Discount field, and change Aggregate Function to “Average”.

Lastly, the ExtendedPrice field will have Aggregate Function of “Sum”.

28

Below, you can see the Order Details list with aggregates at the bottom. These aggregates will change to

reflect any changes as you navigate between orders, change order details, or filter order details.

Total and Subtotal

SQL Expression for Subtotal

From All Controllers, select Orders. Switch to Fields, and on the action bar, press New | New Field. Field

Name is “Subtotal”, of Type “Currency”. Enable “The value of this field is computed at run-time by SQL

Expression”. In the SQL Formula field that appears, type the expression below:

Select sum(unitprice*quantity*(1-discount)) from “order details”

where “Order Details”.OrderID = Orders.OrderID

This will be pasted verbatim into the output expression which retrieves values for the Orders table.

The Label field will be “Subtotal”, enable “Values of this field cannot be edited”, and type “c” in Data

Format String.

29

Add Business Rules to “Orders” Controller and Code Expression for “Subtotal” Field

The Subtotal field is now present in the application. However, it does not update to reflect changes in

the Order Details. This can be solved by adding a business rule to Orders controller and adding a code

expression for Subtotal that will use this rule to calculate the subtotal.

Select the Orders controller from All Controllers list. Edit the controller, and in the Handler field, type

“OrdersBusinessRules”.

Regenerate the project, and open it in Microsoft Visual Studio or Visual Web Developer. Navigate to

App_Code | Rules | OrdersBusinessRules.vb. Enter the CalculateOrderDetailsTotal function.

App_Code/Rules/OrdersBusinessRules.vb

Imports MyCompany.Data
Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Linq

Namespace MyCompany.Rules

 Partial Public Class OrdersBusinessRules
 Inherits MyCompany.Data.BusinessRules

 Public Function CalculateOrderDetailsTotal(ByRef orderID As Nullable(Of Integer)) As Decimal
 Using calc As SqlText = New SqlText(_
 "select sum(unitprice * quantity * (1 - discount)) from [Order Details] where OrderID=
@OrderID")
 calc.AddParameter("@OrderID", orderID)
 Dim total As Object = calc.ExecuteScalar()
 If DBNull.Value.Equals(total) Then
 Return 0
 Else
 Return Convert.ToDecimal(total)
 End If
 End Using
 End Function
 End Class
End Namespace

30

App_Code/Rules/OrdersBusinessRules.cs

using MyCompany.Data;
using System;
using System.Collections.Generic;
using System.Data;
using System.Linq;

namespace MyCompany.Rules
{
 public partial class OrdersBusinessRules : MyCompany.Data.BusinessRules
 {
 public decimal CalculateOrderDetailsTotal(int? orderID)
 {
 using (SqlText calc = new SqlText(@"select sum(unitprice * quantity * (1 - discount)) from
[Order Details] where OrderID= @OrderID"))
 {
 calc.AddParameter("@OrderID", orderID);
 object total = calc.ExecuteScalar();
 if (DBNull.Value.Equals(total))
 return 0;
 else
 return Convert.ToDecimal(total);

 }
 }
 }
}

This function uses SqlText class to create an instance of a query connected to the project’s database.

This simple query selects a sum of UnitPrice multiplied by Quantity multiplied by one minus the

Discount. Don’t forget to save the file.

Note that SqlText utility class is generated as a part of the code base of your application. It uses the

default database connection string and ADO.NET to execute the query.

Switch to the Designer, navigate to the Fields tab of the Orders controller, and select Subtotal. Edit, and

enable “The value of this field is calculated by a business rule expression”. In the Code Formula field that

appears, type in the code below:

CalculateOrderDetailsTotal(orderID)

This is the method that was defined in Visual Studio.

31

To make sure that the calculation will occur when details are changed, change Context Fields to

“OrderDetails”.

Add Total Field, Configure SQL Expression and Context Fields

To handle the Total calculation, you will need to configure an SQL expression similar to the one used in

Subtotal, except that Freight will be included. From All Controllers, select Orders, and switch to Fields

tab. Press New | New Field. Give this field the Name of “Total”, of Type “Currency”. Enable “The value of

this field is computed at run-time by SQL Expression”, and in the SQL Formula, type in the following

expression:

(Select sum(unitprice*quantity*(1-discount)) from “order details” where “Order

Details”.OrderID = Orders.OrderID) + Orders.Freight

Also, enable “The value of the field is calculated by a business rule expression”, and type in:

CalculateOrderDetailsTotal(orderID) + freight

32

The Label will be “Total”, and Data Format String is “c”. Enable “Values of this field cannot be edited”.

In the Context Fields, type “OrderDetails, Freight”.

Now we need to bind the field Total to the views. Click on the field, and switch to Data Fields tab. On the

action bar, press New | New Data Field. For View, select “editForm1”. Category will be “Orders.”

Create another field. The View will be “grid1”, with no Category.

33

If you regenerate the application, you can see this new field in action. It will calculate the total, including

the cost of freight for the order.

Enable Sorting and Filtering

The new Subtotal and Total fields do not allow sorting or filtering, unlike the other fields in the view.

Let’s enable this feature. Select the Orders controller from the list of All Controllers. Switch to Fields, and

select Subtotal. Enable “Allow Query-by-example” and “Allow Sorting”.

Perform the same operation with Total field.

Calculating Freight

The calculation will analyze Order ID and current Freight value. If the order total is greater than $100,

then Freight will be $19.95 flat. Otherwise, Freight is $3.95. User can also override the Freight value.

Below is the updated version of the Orders business rules class. There is an added method called

CalculateFreight. It takes nullable integers orderID and freight, and returns a decimal value. It will call

CalculateOrderDetailsTotal method. If Freight is equal to blank, 0, 3.95, or 19.95, then it will be returned

as 19.95 for Total greater than $100, or 3.95 for Total under $100. If the conditions are not met, then

Freight will not be affected.

34

Modify OrdersBusinessRules.vb(cs) to support the calculation of freight. The sample implementation of

CalculateFreight is presented next.

App_Code/Rules/OrdersBusinessRules.vb

Namespace MyCompany.Rules

 Partial Public Class OrdersBusinessRules
 Inherits MyCompany.Data.BusinessRules

 Public Function CalculateOrderDetailsTotal(ByRef orderID As Nullable(Of Integer)) As Decimal
 Using calc As SqlText = New SqlText(_
 "select sum(unitprice * quantity * (1 - discount)) from [Order Details] where OrderID=
@OrderID")
 calc.AddParameter("@OrderID", orderID)
 Dim total As Object = calc.ExecuteScalar()
 If DBNull.Value.Equals(total) Then
 Return 0
 Else
 Return Convert.ToDecimal(total)
 End If
 End Using
 End Function

 Public Function CalculateFreight(ByRef orderID As Nullable(Of Integer), _
 ByRef freight As Nullable(Of Decimal)) As Decimal
 Dim total As Decimal = CalculateOrderDetailsTotal(orderID)
 If Not freight.HasValue Or freight.Value = 0 Or freight.Value = 3.95 Or _
 freight.Value = 19.95 Then
 If total >= 100 Then
 Return 19.95
 Else
 Return 3.95
 End If
 Else
 Return freight.Value
 End If
 End Function

 End Class
End Namespace

35

App_Code/Rules/OrdersBusinessRules.vs

namespace MyCompany.Rules
{
 public partial class OrdersBusinessRules : MyCompany.Data.BusinessRules
 {
 public decimal CalculateOrderDetailsTotal(int? orderID)
 {
 using (SqlText calc = new SqlText(@"select sum(unitprice * quantity * (1 - discount)) from
[Order Details] where OrderID= @OrderID"))
 {
 calc.AddParameter("@OrderID", orderID);
 object total = calc.ExecuteScalar();
 if (DBNull.Value.Equals(total))
 return 0;
 else
 return Convert.ToDecimal(total);

 }
 }

 public decimal CalculateFreight(int? orderID, decimal? freight)
 {
 decimal total = CalculateOrderDetailsTotal(orderID);
 if (!freight.HasValue || freight.Value == 0 || freight.Value == 3.95m ||
 freight.Value == 19.95m)
 if (total > 100)
 return 19.95m;
 else
 return 3.95m;
 else
 return freight.Value;
 }
 }
}

Go back to the Designer, and select Orders from the list All Controllers. Switch to Fields tab, and select

Freight. Enable “The value of the field is calculated by a business rule expression”, and in the Code

Formula field that appears, type the following code:

CalculateFreight(orderID, freight)

In Context Fields, enter “OrderDetails”.

36

If you save and regenerate the application, you can see Freight field in action. When you change Freight

to 0, and hit Enter on your keyboard, the field will be calculated.

If you were to change the size of an Order Detail so that the Subtotal is under $100, Freight will change

to $3.95.

37

Let’s take a quick look at the Orders business rules class that was automatically created by the code

generator for us. You can see that we have a partial class OrdersBusinessRules with method

CalculateOrders adorned with attributes ControllerAction, which respond to Calculate action The

method calculates Freight, Subtotal, and Total fields by calling CalculateOrderDetailsTotal and

CalculateFreight with orderID passed as an argument.

App_Code/Rules/Orders.Generated.vb

Imports MyCompany.Data
Imports System
Imports System.Collections.Generic
Imports System.Data
Imports System.Linq
Imports System.Text.RegularExpressions
Imports System.Web

Namespace MyCompany.Rules

 Partial Public Class OrdersBusinessRules
 Inherits MyCompany.Data.BusinessRules

 <ControllerAction("Orders", "Calculate", "Freight"), _
 ControllerAction("Orders", "Calculate", "Subtotal"), _
 ControllerAction("Orders", "Calculate", "Total")> _
 Public Sub CalculateOrders(_
 ByVal orderID As Nullable(Of Integer), _
 ByVal customerID As String, _
 ByVal customerCompanyName As String, _
 ByVal employeeID As Nullable(Of Integer), _
 ByVal employeeLastName As String, _
 ByVal orderDate As Nullable(Of DateTime), _
 ByVal requiredDate As Nullable(Of DateTime), _
 ByVal shippedDate As Nullable(Of DateTime), _
 ByVal shipVia As Nullable(Of Integer), _
 ByVal shipViaCompanyName As String, _
 ByVal freight As Nullable(Of Decimal), _
 ByVal shipName As String, _
 ByVal shipAddress As String, _
 ByVal shipCity As String, _
 ByVal shipRegion As String, _
 ByVal shipPostalCode As String, _
 ByVal shipCountry As String, _
 ByVal subtotal As Nullable(Of Decimal), _
 ByVal total As Nullable(Of Decimal))
 UpdateFieldValue("Freight", CalculateFreight(orderID, freight))
 UpdateFieldValue("Subtotal", CalculateOrderDetailsTotal(orderID))
 UpdateFieldValue("Total", CalculateOrderDetailsTotal(orderID) + freight)
 End Sub

 <RowBuilder("Orders", RowKind.New)> _
 Public Sub BuildNewOrders()
 UpdateFieldValue("OrderDate", DateTime.Now)
 End Sub
 End Class
End Namespace

38

App_Code/Rules/Orders.Generated.cs

using System;
using System.Data;
using System.Collections.Generic;
using System.Linq;
using System.Text.RegularExpressions;
using System.Web;
using MyCompany.Data;

namespace MyCompany.Rules
{
 public partial class OrdersBusinessRules : MyCompany.Data.BusinessRules
 {

 [ControllerAction("Orders", "Calculate", "Freight")]
 [ControllerAction("Orders", "Calculate", "Subtotal")]
 [ControllerAction("Orders", "Calculate", "Total")]
 public void CalculateOrders(
 Nullable<int> orderID,
 string customerID,
 string customerCompanyName,
 Nullable<int> employeeID,
 string employeeLastName,
 Nullable<DateTime> orderDate,
 Nullable<DateTime> requiredDate,
 Nullable<DateTime> shippedDate,
 Nullable<int> shipVia,
 string shipViaCompanyName,
 Nullable<decimal> freight,
 string shipName,
 string shipAddress,
 string shipCity,
 string shipRegion,
 string shipPostalCode,
 string shipCountry)
 {
 UpdateFieldValue("Freight", CalculateFreight(orderID, freight));
 UpdateFieldValue("Subtotal", CalculateOrderDetailsTotal(orderID));
 UpdateFieldValue("Total", CalculateOrderDetailsTotal(orderID) + freight);
 }

 [RowBuilder("Orders", RowKind.New)]
 public void BuildNewOrders()
 {
 UpdateFieldValue("OrderDate", DateTime.Now);
 }
 }
}

39

Custom Form Template

You will need to modify the form template, so that the Order Form is easier for the end user to interact

with. First, you need to add Order Form Template user control to the page.

Add “Order Form Template” User Control

In the Designer, click on the All Pages tab. Select “OrderForm”, and switch to Controls tab. On the action

bar, press New | New Control. Press the New User Control icon next to the User Control field. It will have

the Name of “OrderFormTemplate”.

Save, and this will insert the new User Control into the Control. Select “c100” for Container, and save.

Define the Template Placeholder

Open the project in Visual Studio (or Visual Web Developer), and press the Refresh button. Navigate to

App_Code/Controls/OrderFormTemplate.ascx. Open this document, and format using Edit | Format

40

Document. Currently, there is just an UpdatePanel present, which can be eliminated. Use the template

below:

App_Code/Controls/OrderFormTemplate.ascx

<div id="FormTemplate1" runat="server">
 <div id="Orders_editForm1">
 <div class="FieldPlaceholder">
 {CustomerID}
 </div>
 <div class="FieldPlaceholder">
 {EmployeeID}
 </div>
 <div class="FieldPlaceholder">
 {ShipVia}
 </div>
 <div class="FieldPlaceholder">
 {OrderDate}
 </div>
 <div class="FieldPlaceholder">
 {Freight}
 </div>
 <div class="FieldPlaceholder">
 {Total}
 </div>
 </div>
</div>

There is a new element defined, div with id of “FormTemplate1”. Underneath is another div element
with id “Orders_editForm1”. This element instructs the client-side application to present the contents of
editForm1, rendered by Orders data controller, using the template. Underneath this are several more div
elements, of class “FieldPlaceholder”. Inside each, there is just the field name in curly brackets, to get
started.

If you were to save and refresh the application, only the field names will appear in brackets above the
list.

41

This isn’t quite the effect we’re going for, so view code for the file by pressing the View Code button in
the Solution Explorer, and add a line to the method.

App_Code/Controls/OrderFormTemplate.ascx.vb

Partial Public Class Controls_OrderFormTemplate
 Inherits System.Web.UI.UserControl

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs) Handles Me.Load
 FormTemplate1.Style("display") = "none"
 End Sub
End Class

App_Code/Controls/OrderFormTemplate.ascx.cs

public partial class Controls_OrderFormTemplate : System.Web.UI.UserControl
{
 protected void Page_Load(object sender, EventArgs e)
 {
 FormTemplate1.Style["display"] = "none";
 }
}

This line will dictate that FormTemplate1 will have a special Style that changes “display” to “none”, so
that the template will not be displayed when the application runs. If you switch to Design mode, you can
still see the controls and interact with them visually. Save, and refresh the web application. You can see
that no field names in brackets will appear, and that only the fields specified in the template are
presented in the detail view.

42

Let’s make a more sophisticated design for the template, which includes the rest of the fields. In order
to build a completely custom template and retain the data functionality of the client side library, you
need to get rid of the labels. Switch back to Visual Studio, and add the class “DataOnly” to each field.

App_Code/Controls/OrderFormTemplate.ascx

<div id="FormTemplate1" runat="server">
 <div id="Orders_editForm1">
 <div class="FieldPlaceHolder DataOnly">
 {CustomerID}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {EmployeeID}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {ShipVia}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {OrderDate}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {Freight}
 </div>
 <div class="FieldPlaceHolder DataOnly">
 {Total}
 </div>
 </div>
</div>

When you save and refresh the application, you can see that labels are no longer present, but the
formatting is terribly off.

Create Custom HTML Table Layout

You will need to add a custom HTML table layout that uses field placeholders to position the data fields.

The new layout code is displayed below.

Here is the new version of the template, which is much longer than the previous version. You can see

that there is a style element with a few defined CSS rules, .FieldLabel and .RightAlignedInputs.

You can see that there are several div and table elements that hold all of the fields referenced in curly

brackets.

43

App_Code/Controls/OrderFormTemplate.ascx

<%@ Control Language="VB" AutoEventWireup="false" CodeFile="OrderFormTemplate.ascx.vb"
 Inherits="Controls_OrderFormTemplate" %>
<style type="text/css">
 .FieldLabel
 {
 font-weight: bold;
 padding: 4px;
 width: 90px;
 }

 .RightAlignedInputs input
 {
 text-align: right;
 }
</style>
<div id="FormTemplate1" runat="server">
 <div id="Orders_editForm1">
 <table style="width: 100%">
 <tr>
 <td valign="top">
 <table>
 <tr>
 <td class="FieldLabel">
 Customer:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {CustomerID}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Employee:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {EmployeeID}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Order Date:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {OrderDate}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Required Date:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {RequiredDate}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Shipped Date:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {ShippedDate}</div>
 </td>
 </tr>

44

 </table>
 </td>
 <td valign="top">
 <table style="float: right" class="RightAlignedInputs">
 <tr>
 <td class="FieldLabel">
 Address:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipAddress}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 City:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipCity}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Region:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipRegion}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Postal Code:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipPostalCode}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Ship Country:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {ShipCountry}</div>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 {dv101Extender}
 </td>
 </tr>
 <tr>
 <td valign="bottom">
 <table>
 <tr>
 <td class="FieldLabel">
 Ship Name:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {ShipName}</div>
 </td>
 </tr>

45

 <tr>
 <td class="FieldLabel">
 Ship Via:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly">
 {ShipVia}</div>
 </td>
 </tr>
 </table>
 </td>
 <td align="right">
 <table style="margin-right: 4px;" class="RightAlignedInputs">
 <tr>
 <td class="FieldLabel">
 Subtotal:
 </td>
 <td align="right">
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {Subtotal}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Freight:
 </td>
 <td align="right">
 <div class="FieldPlaceholder DataOnly " style="float: right">
 {Freight}</div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 Total:
 </td>
 <td>
 <div class="FieldPlaceholder DataOnly" style="float: right">
 {Total}</div>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </div>
</div>

The C# version of the file will feature a different page directive:

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="OrderFormTemplate.ascx.cs"
 Inherits="Controls_OrderFormTemplate" %>

46

Switch to Design view, and you can see how the layout appears. There is a label next to each field. Visual

tools can be used to rearrange the fields to whatever order you would like.

One key element is the {dv101Extender} in the middle of the layout. This refers to Details View with ID of
“dv101”. Open the Designer, switch to All Pages tab, and click on the OrderForm page. If you switch to
Data Views tab, you can see that “dv101” does exist, and it presents OrderDetails.

Save the template, and refresh the web application. Select an order and you can see the new template
at work.

The Customer, Employee, and Date fields are presented on the left side. Shipping Information is
displayed on the right side. The Details grid is automatically inserted in the next row of the template.
Ship Name and Ship Via are displayed in the bottom left, and Subtotal, Freight, and Total are in the

47

bottom right, underneath the Extended Price row of Order Details. If you edit the record, you can see
that the fields have modified lengths. If you use the up and down arrows to move through Orders, you
can see the information change.

If you have a lot of Order Detail records, you can sort and filter using the columns. You can also search

specific products with Quick Find. The Sum will show a sum of the filtered fields, while Subtotal will be

calculated for all fields relevant to the Order.

48

CreatedBy, CreatedOn, ModifiedBy, ModifiedOn
Let's add tracking of user activity in the Customers table of Northwind database. We'll start by adding
four new fields: CreatedBy, CreatedOn, ModifiedBy, and ModifiedOn. This can be done in SQL Server
Management Studio.

Now let’s create a Web Site Factory application that will automatically populate these fields with

relevant data. Give it the name of “TrackingChanges”.

Connect to your server and select the Northwind database. Use the Object Selector to exclude all other

tables from the project except the Customers table.

49

Enable reporting for the application.

Enable ASP.NET Membership. If necessary, you can connect to a standalone membership database for

the application.

Continue with the project wizard and generate the application. When finished, a web page will appear

with the fresh application. There are only three pages available, Home, Customers, and Membership.

Navigate to Customers. You can see that the new fields are not visible in grid view, but can be viewed

and edited from detail view.

50

Our goal here is to make the fields non-editable in grid and detail view, and not displayed in New

Customers page. Switch back to the Generator, click on the project name, and press the Design button.

From the list of All Controllers, select the Customers controller. Switch to Fields tab, and select the first

field that was made, CreatedBy. Edit the field, and change the Code Default field to

“Context.User.Identity.Name”. This will insert the name of the user creating the record.

Save this field, and click on the next field, CreatedOn. In the Code Default field, insert “DateTime.Now”.

This will insert the date that the field was created on. Scroll down, and in the Data Format String field,

type in “{0:G}” or “G”. This will show the date and time, up to the seconds. If lowercase “g” is used,

seconds will not be displayed.

51

Now, save and move on to the ModifiedBy field. As this field needs to be updated every time the record

is modified, we will use the Code Value field. Type in “Context.User.Identity.Name”, and save.

Next, go to the ModifiedOn field. In the Code Value property, type in “DateTime.Now”, and in the Data

Format String property, type in “{0:G}” or “G”. These expressions work for both Visual Basic.NET and C#.

Next, we’ll modify the bindings of each field to the respective data views. Select CreatedBy, and switch

to the Data Fields tab. Edit the first binding so that the field is hidden in createForm1, and change Text

Mode to “Static” for editForm1.

52

Save, and go back to the list of fields. Select the CreatedOn field, and switch to the Data Fields tab.

Perform the same changes as with CreatedOn.

Go back to the list of fields. The Modified fields will require an additional modification. Select the

ModifiedBy field, and switch to Data Fields tab. On the action bar, press New | New Data Field. Specify

the View field as “grid1”, change Text Mode to “Static”, and save.

Also, change createForm1 data field to Hidden and change editForm1 so that Text Mode is “Static”.

53

Go back to the list of fields and select ModifiedOn. Switch to Data Fields tab, and perform the same

operations as with ModifiedBy.

Exit the Designer, and generate the application. When the web page opens, navigate to the Customers

page. You can see that ModifiedBy and ModifiedOn fields are now present in grid view. However, if you

edit the row in-line, the fields will be read-only.

If you modify a record, you can see that the Modified fields will be updated as well.

54

Now, log out of the application and log in as user (User Name: user, Password: user123%). Click on New

Customers button on the action bar. The new fields are not visible in this view.

Fill in the required fields, and save the record. It will appear in the Customers list, with correct

ModifiedBy and ModifiedOn information. If you select the record, you can view the CreatedBy and

CreatedOn fields in detail view. When you edit the record, the Created and Modified fields will remain in

read-only state.

55

Log out of the application. Log in again as admin. Modify the record you just created, and the

ModifiedBy and ModifiedOn fields will change accordingly. The CreatedBy and CreatedOn fields will stay

the same, however.

56

Many-To-Many Fields
Let’s set up a many-to-many field to the Employees page in a Web Site Factory application. As you can
see below, the EmployeeTerritories junction table links together Employees and Territories.

Below, you can see how the Employees page is presented in a non-customized Web Site Factory
application. There is a long list of fields going down the page, and several tabs below for the child record
lists. One of these lists contain all the relevant territories to the selected employee.

57

We would like to make the form more compact, and move the Territories directly onto the Employees

form, as well as make Territories more easily editable.

Bring up Code On Time Generator, select the project name, and press Design. From the list of All
Controllers, select Employees. First, let's make the presentation of the data more compact by switching
to Categories tab. Change both New Column and Floating to “Yes” for both categories.

Now, switch to Fields tab and create a new Field. Give it the Name “Territories”, Type “String”, and
enable “Allow null values”. Enable “The value of this field is computed at run-time”, and specify the SQL
Formula of “NULL”. Label will be “Territories”.

The last step will be to indicate how the items will be displayed. From Items Style, choose “Checkbox
List”. Items Data Controller will be “Territories”, Data Value Field is “TerritoryId”, and Data Text Field is
“Territory Description”. Target Controller will be “EmployeeTerritories”. Save the field, and select it from
the list.

58

Select the field you just created, Territories, and then click on Data Fields tab. We will need to bind the
new field to several views. Create a new data field with View of “createForm1”, Category of “New
Employees”, and set Columns to “5”.

Save this data field and create a new one. The next data field will be of View “editForm1”, Category of
“Employees”, with Columns set to “5”.

59

Save, and press the Preview button on the action bar.

The new Employees page will appear in a browser window. Select an employee and you can see that the
detail view is much more compact. There is also a list of territories associated with that employee.

If you press the Edit button, then the fields will become editable. You will notice that the new Territories
field becomes a list of checkboxes. You can mark however many selections, and the application will save
your selection when you press Ok.

60

Data Controller URL Parameters
Code On Time applications recognize several URL parameters that allow constructing simple URL actions

to open a multiple-purpose page in “new”, “edit”, or “view” mode.

The following URL will start a record in "new" mode.

http://dev.codeontime.com/demo/websitefactory1/Pages/Customers.aspx?_controller=Customers&_c

ommandName=New&_commandArgument=createForm1

The following URL will start the Products page with product #7 displayed in "edit" mode.

http://dev.codeontime.com/demo/WebSiteFactory1/Pages/Products.aspx?ProductID=7&_controllerNa
me=Products&_commandName=Edit&_commandArgument=editForm1

http://dev.codeontime.com/demo/websitefactory1/Pages/Customers.aspx?_controller=Customers&_commandName=New&_commandArgument=createForm1
http://dev.codeontime.com/demo/websitefactory1/Pages/Customers.aspx?_controller=Customers&_commandName=New&_commandArgument=createForm1
http://dev.codeontime.com/demo/WebSiteFactory1/Pages/Products.aspx?ProductID=7&_controllerName=Products&_commandName=Edit&_commandArgument=editForm1
http://dev.codeontime.com/demo/WebSiteFactory1/Pages/Products.aspx?ProductID=7&_controllerName=Products&_commandName=Edit&_commandArgument=editForm1

61

The following URL will select a Product record with ID = 35 in "view" mode:

http://dev.codeontime.com/demo/WebSiteFactory1/Pages/Products.aspx?ProductID=35&_controllerN

ame=Products&_commandName=Select&_commandArgument=editForm1

The “_controller” parameter is optional if your page presents a single data controller. You have to use

this parameter to ensure that master-detail pages will respond correctly. The following URL will navigate

to the protected Suppliers page and will select supplier #22 in “edit” mode. You will have to sign in to

access the page.

http://dev.codeontime.com/demo/WebSiteFactory6/Pages/Suppliers.aspx?SupplierID=22&_controllerN

ame=Suppliers&_commandName=Edit&_commandArgument=editForm1

Notice that cancellation or successful Insert, Update, or Delete action will automatically navigate back to

the previous page that was loaded in the browser prior to navigation with data controller URL

parameters. This convenient behavior will save time that is typically needed to write redirection logic in

similar situations.

http://dev.codeontime.com/demo/WebSiteFactory1/Pages/Products.aspx?ProductID=35&_controllerName=Products&_commandName=Select&_commandArgument=editForm1
http://dev.codeontime.com/demo/WebSiteFactory1/Pages/Products.aspx?ProductID=35&_controllerName=Products&_commandName=Select&_commandArgument=editForm1
http://dev.codeontime.com/demo/WebSiteFactory6/Pages/Suppliers.aspx?SupplierID=22&_controllerName=Suppliers&_commandName=Edit&_commandArgument=editForm1
http://dev.codeontime.com/demo/WebSiteFactory6/Pages/Suppliers.aspx?SupplierID=22&_controllerName=Suppliers&_commandName=Edit&_commandArgument=editForm1

62

Universal Lookup

Universal Lookup Database
Universal Lookup functionality allows extension of otherwise static database structures with custom

fields, and simplifies maintenance of lookup records in a fixed set of tables. Below is a sample database

diagram with a universal lookup. Lookup table in the middle has integer LookupID, string LookupText,

and LookupGroupName field. Lookup records in the same group constitute a virtual lookup dataset.

Below is a list of records available in this table. There are several records with the group Categories,

some other ones with the groups Sub Categories, Suppliers, and Comm Methods.

63

The lookup table also has three self-referring keys, Parent1LookupID, Parent2LookupID, and

Parent3LookupID. This can be used to refer to the category of a subcategory. You can see which

subcategories belong to which category in the field list. The references in our example are under

Parent2LookupID field.

The products table has CategoryID, SubCategoryID, and SupplierID, all of whom are referring to the

same lookups table. You will have to set up foreign keys to allow Code On Time Generator to detect the

relationship that the universal lookup table creates.

This script creates the database tables for Microsoft SQL Server.

USE [UniversalLookups]

GO

/****** Object: Table [dbo].[Lookups] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Lookups](

 [LookupID] [int] IDENTITY(1,1) NOT NULL,

 [LookupText] [nvarchar](250) NOT NULL,

 [LookupGroupName] [nvarchar](50) NOT NULL,

 [LookupDisplayOrder] [int] NULL,

 [Parent1LookupID] [int] NULL,

 [Parent2LookupID] [int] NULL,

 [Parent3LookupID] [int] NULL,

 CONSTRAINT [PK_Lookups] PRIMARY KEY CLUSTERED

(

 [LookupID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[Products] ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Products](

 [ProductID] [int] NOT NULL,

 [ProductName] [nvarchar](50) NOT NULL,

 [CategoryID] [int] NOT NULL,

 [SubCategoryID] [int] NULL,

 [SupplierID] [int] NOT NULL,

 [Price] [money] NOT NULL,

 CONSTRAINT [PK_Products] PRIMARY KEY CLUSTERED

(

 [ProductID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: ForeignKey [FK_Lookups_Parent1Lookup] ******/

64

ALTER TABLE [dbo].[Lookups] WITH CHECK ADD CONSTRAINT

[FK_Lookups_Parent1Lookup] FOREIGN KEY([Parent1LookupID])

REFERENCES [dbo].[Lookups] ([LookupID])

GO

ALTER TABLE [dbo].[Lookups] CHECK CONSTRAINT [FK_Lookups_Parent1Lookup]

GO

/****** Object: ForeignKey [FK_Lookups_Parent2Lookup] ******/

ALTER TABLE [dbo].[Lookups] WITH CHECK ADD CONSTRAINT

[FK_Lookups_Parent2Lookup] FOREIGN KEY([Parent2LookupID])

REFERENCES [dbo].[Lookups] ([LookupID])

GO

ALTER TABLE [dbo].[Lookups] CHECK CONSTRAINT [FK_Lookups_Parent2Lookup]

GO

/****** Object: ForeignKey [FK_Lookups_Parent3Lookup] ******/

ALTER TABLE [dbo].[Lookups] WITH CHECK ADD CONSTRAINT

[FK_Lookups_Parent3Lookup] FOREIGN KEY([Parent3LookupID])

REFERENCES [dbo].[Lookups] ([LookupID])

GO

ALTER TABLE [dbo].[Lookups] CHECK CONSTRAINT [FK_Lookups_Parent3Lookup]

GO

/****** Object: ForeignKey [FK_Products_Category] ******/

ALTER TABLE [dbo].[Products] WITH CHECK ADD CONSTRAINT

[FK_Products_Category] FOREIGN KEY([CategoryID])

REFERENCES [dbo].[Lookups] ([LookupID])

GO

ALTER TABLE [dbo].[Products] CHECK CONSTRAINT [FK_Products_Category]

GO

/****** Object: ForeignKey [FK_Products_SubCategory] ******/

ALTER TABLE [dbo].[Products] WITH CHECK ADD CONSTRAINT

[FK_Products_SubCategory] FOREIGN KEY([SubCategoryID])

REFERENCES [dbo].[Lookups] ([LookupID])

GO

ALTER TABLE [dbo].[Products] CHECK CONSTRAINT [FK_Products_SubCategory]

GO

/****** Object: ForeignKey [FK_Products_Supplier] ******/

ALTER TABLE [dbo].[Products] WITH CHECK ADD CONSTRAINT

[FK_Products_Supplier] FOREIGN KEY([SupplierID])

REFERENCES [dbo].[Lookups] ([LookupID])

GO

ALTER TABLE [dbo].[Products] CHECK CONSTRAINT [FK_Products_Supplier]

GO

65

Using the Standard Application
Here is the standard Web Site Factory project that is generated straight from the UniversalLookup

database. Navigate to the Lookups page, and you will see a list of records similar to what SQL

Management Studio provides (with some more advanced functionality, such as adaptive filtering), and

you can easily add new records to the table.

Set Lookup Group Name filter to Suppliers (using the column header), click on the dropdown menu next

to Supplier 3, and press New.

A new inline row will appear. Lookup Text field will be called “Supplier 4”, with Lookup Group Name of

“Suppliers”. Press Insert, and the record will be saved.

66

Now, switch to the Products page. The product records are displayed, but with a few deficiencies. The

“Text” suffix is included for three of the fields (Category Lookup, Sub Category Lookup, Supplier Lookup).

When a record is edited, the lookup values for those fields are not limited by Lookup Group Name. All

values are presented.

67

Modifying the Standard Application
Bring up Code On Time Generator, select the project name, and press Design. Select the Lookups

controller and switch to the Views tab. Edit View grid1, and change Sort Expression to

LookupGroupName, LookupDisplayOrder

Now, go back to All Controllers, and select Products controller. Switch to Fields tab. Edit the fields with

“Lookup Text” in the Label, and remove the relevant text from their respective Label.

68

We will also need to make some modifications to a few fields (CategoryID, SubCategoryID, and

SupplierID) to make sure the lookup values are filtered properly. Edit the CategoryID field, and scroll

down to the Dynamic Properties section. Change Context Fields value to

LookupGroupName=’Categories’

Save the record, and select SubCategoryID. Scroll down to the Dynamic Properties section, and in

Context Fields, insert

LookupGroupName=’Sub Categories’, Parent1LookupID=CategoryID

Save the change, and edit SupplierID. Scroll down to Dynamic Properties, and type in

LookupGroupName=’Suppliers’

Save the record, close the Designer, and generate the application.

69

View the Modifications
The columns are now displaying proper headers, with no extraneous “Lookup Text”. The records are

now sorted according to Lookup Group Name and Lookup Display Order.

If you navigate to the Products page, you can see the extraneous text has been removed here as well.

If you edit a record, and select a Category with the lookup, you will only see Categories. If you open the

Sub Category lookup, only sub categories relevant to the selected Category will be shown. Supplier

lookup will only show suppliers.

70

Further Modification
Nevertheless, lookups for those fields are not really that convenient for the end user. Let’s modify the

presentation to display a dropdown list for Category, radio button list for Sub Category, and a list box for

Supplier.

Open the Designer, select the Products controller, switch to Fields tab, and edit CategoryID. Scroll down

to Lookup section, and select “Drop Down List” for Items Style. Data Value Field is “LookupID” and Data

Text Field is “LookupText”.

Save, and edit SubCategoryID field. Change Items Style to “Radio Button List”.

Save, and edit SupplierID field. Change Items Style to “List Box”.

71

Save the field, close the Designer, and generate the application. When the web page opens, navigate to

Products page. If you edit a record, you can see the new item lookup styles in action.

72

Role-based Security
Web Site Factory applications rely on Microsoft ASP.NET for security infrastructure. In ASP.NET

applications, each user is assigned one or several roles. The roles that a user has determine what a user

is able to do. For example, only users with the Administrator role can access the Membership Manager.

You can secure your pages, fields, and the various actions through roles.

Pages
The current page being displayed does not have a user logged in. The only page available is Home, both

on the Site Map and on the menu bar. The membership bar allows us to sign in. By default, there are

two accounts available for use, administrator and standard user. Let’s log in as administrator.

You can see that after logging in, the sitemap and menu bar has been expanded. More options are

available, including the Membership page.

Navigate to the Membership page. On this page, we can create, modify, and delete Users and Roles. This

enables a high degree of control over who can access the application. However, this page is only

73

accessible to those users with administrative privileges. When we sign out, you can see that we have

been given a redirect URL, and taken back to the home page and prompted to log in.

If we log in as a standard user, then we will be redirected again. The navigation enables access to all of

the pages in the application except the Membership page, which is absent.

Let’s change things up a bit. We will change the security so that only those users with administrative

privileges will be able to access the Order Details page. Run Code On Time Generator, click on the project

74

name, and then press the Design button. Click on the All Pages tab at the top, and select Order Details

page.

Press the Edit button, and change the Roles field to “Administrators”. This will insure that only users

with the administrator’s role can see the page. Press Ok, then Close, and generate the application.

When the web application loads in your browser, you can see that you are still logged in as a standard

user. The Order Details page is no longer available in the navigation. You can try entering the URL for

Order Details page. This will only redirect you back to the home page.

75

If you logout, and log in as admin, the page will be available.

Fields
Fields can also be secured through roles. You can specify some roles to only view the field as read-only,

and specify other roles to not view the field at all.

Suppose that you need to protect certain fields from modification and/or viewing by unwanted users.

Northwind allows editing of the CustomerID field, which could be disastrous if changed. Let’s make this a

read only field for standard users.

76

Run Code On Time Generator, click on the name of the project, and press the Design button. Click on the

Customers controller in the All Controllers list. Navigate to the Fields tab, and select the CustomerID

field.

Edit CustomerID. Change the Write Roles field to “Administrators”. If you wanted the field completely

hidden to standard users, you can write “Administrators” in the Read Field. Save the field, press Close,

and generate the application.

When the web application loads in the browser, log in as standard user. When you edit a customer

record, the CustomerID field will be read only.

If we log in as administrator, the CustomerID field will be editable again.

77

Actions
Suppose that you have a need to prevent some users from executing certain actions. By default, the

standard user account can create, edit, and delete products. Let’s change this so that the standard user

can only view the products. Administrator will be the only role that can create, edit, and delete. There

are several locations we will have to modify, such as the dropdown, the buttons on the action bar, and

the buttons in detail view.

This will be done by switching to Code On Time Generator, clicking on the project name, and pressing on

the Designer button. Select the Products controller. Switch to the Action Groups tab.

Click on ag1, or Action Group 1. Click on the actions tab. You can see that there is Select, Edit, a blank

action, Duplicate, and New. These actions correspond to the dropdown next to the product name in the

application.

Edit the Edit action. In the Roles field, type in “Administrators”. This will insure that only users with the

Administrators role can edit. Perform the same with Delete, Duplicate, and New.

78

Go back to the Action Group list. Navigate to ag2. Here is a long list of actions. Most of these are

activated when a previous action has been selected, such as Edit, New, or Duplicate. In this case, the

only actions that need modification would be the first two, without a When Last Command Name

argument. Insert “Administrators” in their Role fields.

Go back to the Action Group list, and click on ag3. This action is the New Product button on the action

bar. Change the Role field to “Administrators”.

On the Action Group list, navigate to ag4. These are the buttons that appear on the action bar when you

select a record, Edit and Delete. Add “Administrators” to the Role fields of these actions. Now, generate

the application.

79

Login as user, and navigate to Products. First thing you will notice is that there is no New Products

button. When you activate the dropdown menu, the only option available is Select. When you go into

detail view, the only button available is Close.

Logout, and login as administrator. You can see that the New, Edit, and Delete buttons have returned.

80

Row-level Security

Role vs. Row-Level Security
Let’s compare role and row-level security. Roles are controlling access to shared resources of your

application, such as pages, data fields, and actions. Row-level security further restricts access to

individual items (rows) presented in the application data views.

Roles

Roles are equivalent to vertical restrictions in your application. Let’s consider a few examples of vertical

restrictions. Sales representatives are allowed to see a page with a list of Orders. Users from Accounting

are allowed to see the Commission data field in the list of orders. Users with role Admin can access the

Membership Manager and can create, edit, and delete any user.

Row-Level

Row-level security is equivalent to horizontal restrictions, applied on top of vertical restrictions. User

andrew.fuller can only view his respective orders that are marked with his last name. User

federal.shipping can see all orders that are “not shipped” or “shipped this or last week” if orders are

assigned to shipper Federal Shipping.

Implementing Row-Level Security

How do you go about implementing row-level security?

1. Define application roles, such as Sales, Shippers, etc.

2. Assign roles to user accounts.

3. Create custom views available for each role.

4. Define when a custom view is displayed.

These four steps will provide row-level security. Step five will be to impose vertical security on the data

by defining row-level filters for each custom view.

Real World Example
Let’s consider a real world example. We’ll use Northwind database. We’ll set up row-level security with

role Sales, Shippers, and Customers.

Creating Roles

Log in to the application as Administrator. Navigate to the Membership Manager, and switch to the roles

tab. On the action bar, press the New button, and then New Role.

81

You will be taken to the role creation screen. In the Role Name field, type Sales. Press Ok to save the

new role.

Create two more roles. One will have the name of Shippers, and the other will be called Customers.

When finished, the list of roles should look like the image below.

Creating User Accounts

We need to set up several user accounts. In the Membership Manager, switch to Users tab. On the

action bar, click on New, and press New User.

82

Create the user Fuller. The password will be “user123%”, which fulfills standard restrictions on the

password imposed by ASP.NET. Give Mr. Fuller the roles of Users and Sales, and fill in the password

recovery information.

Next, create the account Federal Shipping. It will have the same password. This account will have the

roles Users and Shippers. Don’t forget to fill in the password recovery information.

83

AROUT will be the last account created. AROUT is the customer ID of the company Around The Horn.

This account will have the roles Users and Customers.

Defining Role-Specific Views

Now we need to define role-specific views. Run Code On Time Generator and select the project from the

project list. Click on the Design button. Select Orders data controller from the controller list.

84

Click on the Views tab at the top of the page. You should be on the page as shown below. On the action

bar, press New, and click on New View.

Create a new View with the Id of salesGrid1. In the Command field, click on (select) and choose

command1 from the list. For Label field, type “My Orders”. The Header Text will be “This is a list of my

orders”.

85

Sort the orders by OrderDate in descending order by typing in “OrderDate desc” in the Sort Expression

field. For Base View ID, select grid1. This will copy all data fields from grid1. Press Ok to save the view.

Next, create a View with the ID shippersGrid1, with Command of command1. The Label will be “Orders

To Ship”, and the Header Text will be “These orders must be shipped”. For Sort Expression, sort by

ShippedDate in descending order. Base View ID will be grid1. Press Ok to save.

86

The last view will go by the ID of customersGrid1. Command will be command1, Label will be “My Recent

Orders”, and Header Text will be “Orders that were placed this year”. Sort all orders by OrderDate in

descending order by typing in “OrderDate desc” in Sort Expression. Base View ID will be grid1 as well.

87

Views in Action

Let’s take a look at these views in action. Regenerate the application using Code On Time Generator.

When it finishes, navigate to the Orders page. If you select the My Orders view from the View Selector,

you can see the custom description at the top, and that the Order Date field has been sorted in

descending order. This list of orders is designed for salespeople.

The view Orders To Ship lists all of the most recent orders in descending order. The view My Recent

Orders is designed for customers. We do not expect end users to sign in, go to the Orders page, and

select the correct view from the selector, so we need to indicate when custom views will override grid1

and present themselves to the end users. Custom views will replace grid1 at runtime. We’ll use Virtual

View ID to configure replacement, and use Override When to configure condition for replacement to

take place.

Using OverrideWhen

In Code On Time Generator, click on the project name in the project list and press the Design button.

Select the Orders data controller from the controller list, and switch to the Views tab.

88

Click on salesGrid1, and press Edit. Scroll down to the Virtualization section. Change Virtual View ID to

grid1. In the OverrideWhen field, type in “Context.User.IsInRole(“Sales”)”. Save the view.

The view shippersGrid1 will have a similar expression. Change Virtual View ID to grid1, and for

OverrideWhen, type in “Context.User.IsInRole(“Shippers”)”.

Perform the same operation for customersGrid1. Change Virtual View ID to grid1, and OverrideWhen to

“Context.User.IsInRole(“Customers”)”.

89

Row-Level View Filters

Now we need to define row-level view filters. These will insure that sales and customers will see their

respective orders, and that shippers will see orders that were not shipped or shipped this or last week.

For salesGrid1, type in the Filter Expression of “EmployeeLastName = $UserName()”.

For shippersGrid1, type in the Filter Expression of:

ShipViaCompanyName = $UserName() and
(ShippedDate is null or
 (
 $ThisWeek(ShippedDate) or
 $LastWeek(ShippedDate)

)
)

Lastly, set the Filter Expression of customersGrid1 to

CustomerID = $UserName() and
$YearToDate(OrderDate)

Close the designer, and regenerate the application.

90

Viewing the Results

First, we sign in as Fuller. The password is user123%. Click Login, and navigate to the Orders page. You

can see that all the orders listed are those with the Employee Last Name of Fuller, and there are no

other filtering options available. The orders are sorted according to OrderDate.

Let’s sign out, and sign in again as Federal Shipping, with the password of user123%. On the Orders page,

you can see that all of the orders have Federal Shipping as Ship Via Company Name, and no other

filtering options are available. It is sorted in descending order by Shipped Date. You can see that the

orders listed are those shipped this week, last week, or were never shipped.

This time, sign in as AROUT, with the password user123%. You can see that the list of orders has only

one record in it, which belongs to the company of AROUT, and it is sorted in descending order of Order

Date.

91

Ideal Implementation

The implementation that we have created is not ideal. Northwind database was not designed for row-

level security. Ideally, UserName or UserId column would be available in the tables Employees, Shippers,

and Customers. Filters with the $UserName() or $UserId() functions would be matched to the

corresponding data fields.

If you were to have the UserName field in the specified tables, then a de-normalization field map will

need to be set up to automatically include UserName in the respective data controllers.

You would also need to change your filters by replacing the data fields EmployeeLastName,

ShipViaCompanyName, and CustomerCompanyName.

92

Custom Page Background
Below is a picture of the standard home page of a Web Site Factory application generated by Code On

Time Generator. You can quickly add a custom background to this or any other page with a custom CSS

stylesheet.

Open your project in Visual Studio or Visual Web Developer and create a

new CSS style sheet in the same ~/App_Themes folder of your project

that contains the _Layout.skin file.

Type the following CSS rules in the style sheet:

.pages_home_aspx #PageContent

{

 background-image: url(../_Shared/SettingsGraphic.jpg);

 background-repeat: repeat-x;

}

The rule will change the home page content to display the standard

SettingsGraphics.jpg image as the background image across the top of

the page, as shown on the next page.

93

In this example, we copied the standard Windows 7 background wallpaper img24.jpg into the folder

with the CSS file and changed the CSS rule to:

.pages_home_aspx #PageContent

{

 background-image: url(img24.jpg);

 background-repeat: repeat-x;

}

The home page of the application has changed, as shown below.

The CSS class pages_home_aspx is automatically assigned to the home page by the application

framework. In fact, every page of a Web Site Factory application automatically assigns its own class

name to the content container element. This allows creating CSS rules with precise targeting of

94

individual pages. The styling of all pages in the generated web applications is controlled entirely by a

collection of CSS stylesheets that make your application look like Microsoft SharePoint Services web site

by default.

Disable the stylesheet and it turns into a “black and white” canvas. This can be done by using Developer

Tools in Internet Explorer 8. On your keyboard, press F12. In the menu of the screen that appears, press

Disable | CSS.

If you feel an inspiration, then go ahead and create your own masterpiece!

95

Creating Three Level Master Detail
Here we have a three level master detail page. In its initial state you can only see Customers. If you

select a record by clicking on its row, a second view will appear underneath the list of Customers. This

list shows Orders relevant to the selected Customer. If you select an Order from the list, you will see a

list of Details appear underneath. When you scroll down the page, a summary of the selected customer

will stay visible in the top left corner of your screen. This three level master detail layout is a very quick

and efficient way of going through the records.

To start creating a three level master detail data layout, open Code On Time Generator, select the

project name, and press Design. Switch to the All Pages tab. On the action bar, press New | New Page.

96

Give the page the Name of “ThreeLevelMasterDetail”, with Index of “1005”, and Title and Path of “3-

Level Master-Detail”. Change Style to “Miscellaneous”, and About This Page will be “This page will demo

a three level master-detail data layout.” Make the Roles field blank.

97

Save the page, and select the new page from the list of All Pages. Switch to the Containers tab, and

create a new container. It will have Flow of “New Row”.

Save, and create another container with Flow of “New Row”. In CSS Style Properties, write “padding-

top:8px;”.

Now, create a third container with the same settings as before.

98

Now, switch to the Data Views tab. Create a new Data View, and place it in Container “c100”, with

Controller of “Customers”, and View of “grid1”. Text will be “Customers”, and Page Size will be “5”.

Enable “Show in Summary”.

99

Save, and create another data view. This one will have Container of “c101”, Controller of “Orders”, View

of “grid1”, Text of “Orders”, and Page Size of “5”. Disable “Show View Selector”. The Filter Source will be

“dv100” and Filter Fields will be “CustomerID”. Set Auto Hide to “Container”.

100

Create one more data view. Container will be “c102”, Controller will be “OrderDetails”, View will be

“grid1”, Text will be “Details”, and Page Size will be “5”. Disable “Show View Selector”. Filter Source will

be “dv101” and Filter Fields will be “OrderID”. Set Auto Hide to “Container”.

Save the data view, close the Designer, and generate the application. When the page loads, sign in and

navigate to the 3-Level Master-Detail page to see your new page in action.

101

Grouping Tabbed Data Views
We learned how to create a three level master detail data layout on a new page in your application. If

you wanted to use tabs to group your data views, you will have to take different steps.

If you generate a Code On Time application from the Northwind database using Classic layout, then the

Customers page will look like the picture below. When you select a customer from the list, a tabbed view

will appear underneath with relevant information, from the Orders, Customer Demo, and Order Details

tables. The default page provides only a two level master detail, and displays all relevant Order Details

to the selected customer. We would like a list of Order Details to appear underneath Orders list, and to

be filtered according to the selected Order.

102

Open Code On Time Generator, select the project name, and press Design. Switch to the All Pages tab.

Select the Cusitomers page from the list, and switch to Data Views. Using the dropdown menu next to

view4 (that holds OrderDetails controller), press Delete, as this view is not needed.

Now, using the action bar, press New | New Data View. The Container will be “container2”, Controller

will be “OrderDetails”, and View “grid1”. Change Activator to “Tab”. The Text must be the same as the

Orders tab to insure that both data views will be on the same tab, so write “Orders”.

The Filter Source will be “view2”, and Filter Fields will be “OrderID”. Indicate that Auto Hide is “Self”.

103

Close the Designer, and generate the application. When the web page appears with the modified

application, navigate to the Customers tab. Now, when you select a Customer, tabs will appear

underneath the Customers list displaying Orders and Customer Demo. When you select an order, its

respective Order Details will appear underneath, within the tab.

104

Mixed Authentication
Code On Time web application generator supports ASP.NET Membership and several other

authentication mechanisms. ASP.NET Membership is an attractive option for Internet applications and

can be also successfully used in intranet applications deployed within network boundaries of an

organization for use by a specific group of business users.

Web application administrator can use the advanced user manager provided with each generated

application to create user accounts and manage roles.

Large organizations frequently mandate the need for a single sign-on mechanism to eliminate the need

to manage multiple passwords and users accounts.

1. Typically a user name token is created and validated by the authentication software deployed to

the local network. The user name token is embedded into each web request coming to a server.

The authenticated user name can be found in a page request header variable.

2. Another option is to use the active directory identity name that can be available if Windows

Authentication is enabled in your web application.

You can take advantage of either option to implement a mixed authentication based on the ASP.NET

Membership option available in Code On Time database web application. Only the users registered in

the ASP.NET Membership database of your application can access the application. User roles will also

be derived from the membership database.

Users can self-register to use the application and will be able to access the application page when the

user account is approved by administrator. Administrator can also create all authorized user accounts

and assign the same “secret” password to all users.

Single sign-on is enabled through changes to the login user control. Open

file ~/App_Code/Controls/Login.ascx and modify the code-behind file as shown on the next page.

105

C#:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Security;
using System.Security.Principal;

public partial class Controls_Login : System.Web.UI.UserControl
{

 protected void Page_Load(object sender, EventArgs e)
 {
 // Mixed authentication sample
 if (!Page.User.Identity.IsAuthenticated)
 {
 string userName = null;
 // 1. read the identity from the page request header variable
 userName = Request.Headers["UserName"];
 // 2. read the identity from the identity of the current Windows user
 userName = WindowsIdentity.GetCurrent().Name;
 // simulate the user name and ignore methods (1) and (2)
 userName = "admin";
 if (!String.IsNullOrEmpty(userName))
 {
 MembershipUser user = Membership.GetUser(userName);
 if (user != null)
 FormsAuthentication.RedirectFromLoginPage(user.UserName, false);
 }
 }
 }
}

Methods of “silent” authentication are marked as (1) and (2). This particular example ignores the

obtained information and simply assigns explicitly the user name “admin” to variable

“userName”. Application makes a lookup request to identify the user as a valid ASP.NET Membership

user. If that is the case then the user is automatically signed into the web application.

The login control is generated the first time only. Your changes to the code-behind file will stay intact

with subsequent code generations.

You can adjust the sample to reflect your actual single sign-on method.

106

Chart View
Code On Time applications now offer a new type of data rendering – “Chart” view. Chart view is just

another way of presenting a set of data records retrieved from the database. Chart view supports many

end-user features including sorting and adaptive filtering.

107

Creating a Chart View
Generate a new web application from the Northwind database. Browse the generated web site and

select Reports | Sales by Category menu option. The following data view will be displayed.

Columns CategoryID, Category Name, Product Name,and Product Sales are visible in the grid view.

The data controller is based on the database view dbo.[Sales by Category]. This view is a part of the

Northwind database and is defined as follows.

create view [dbo].[Sales by Category] AS

SELECT Categories.CategoryID, Categories.CategoryName, Products.ProductName,

 Sum("Order Details Extended".ExtendedPrice) AS ProductSales

FROM Categories INNER JOIN

 (Products INNER JOIN

 (Orders INNER JOIN "Order Details Extended" ON

 Orders.OrderID = "Order Details Extended".OrderID)

 ON Products.ProductID = "Order Details Extended".ProductID)

 ON Categories.CategoryID = Products.CategoryID

WHERE Orders.OrderDate BETWEEN '19970101' And '19971231'

GROUP BY Categories.CategoryID, Categories.CategoryName, Products.ProductName

108

Start the code generator, select the project name, and click Design button. Select the data

controller SalesbyCategory and click on Views tab.

Add a new view, set its Id to chart1, select Chart as view type, and select command1 as command. Set

label to Sales Chart. Enter “Total sales by product category.” in the header text.

Save the view and click on its name in the list of available data controller views, select Data Fields tab.

Add new data field with the field name set to CategoryName. Set its Chart property

under Miscellaneous section to X. Save the field.

Add another data field with the field name set to ProductSales. Enter letter “c” without double quotes

into Data Format String. Set the Aggregate Function property of the data field to Sum. Set

its Chart property to Bar (Cylinder). The list of data views in Designer will look as follows.

Exit the Designer and generate your application. Activate the same page and select Sales Chart option in

the view selector in the right hand corner of the action bar. The following chart on the next page will be

displayed.

109

Activate the filter in the view selector and select “Filter…” item in the popup menu of the Category

Name option.

110

Select several filter options to review subset of data presented in the chart.

Displaying Multiple Values
The chart view is capable of displaying multiple data series. Let’s add a calculated field to the same data

controller to simulate the “Previous Product Sales”. Select the data controller in Designer and

activate Fields tab. Add a new field with name PreviousProductSales, indicate that the field value is

calculated by SQL formula and enter the following SQL formula into SQL Formula text box:

cast(ProductSales * Rand() as Numeric(10,2))

Set the label of the field to “Previous Product Sales”. Set its Data Format String to “c” without quotes.

Save the field and select Views tab. Select chart1 in the list of available views. Bind the new field to

111

the chart1 view and set its properties to make them look as shown in the screenshot. Notice that we are

using a different Chart type Column(Cylinder) for ProductSales.

Run the generated application. The following chart view will be presented if you activate Sales Chart in

the view selector. The actual spline that you will see may look different due to randomization factor of

the formula that we have specified to simulate the previous sales.

112

Legend
You can activate a legend if you select the chart view in Designer and mark the check box “Enable legend

in the chart area”. The data field header will be used as the text displayed in the chart legend.

Custom Charts
Chart views are based on the standard Microsoft Data Visualization component included with ASP.NET

4.0. Unlimited customization options are available to developers. You can quickly customize a chart view

if you select “Custom” as Chartproperty of the data field.

All charts are generated as ASP.NET user controls stored in ~/Controls folder of your web application.

For example, the name of the chart in this sample is ~/Controls/Chart_SalesbyCategory_chart1.ascx. The

113

name of a chart user control always starts with Chart and includes the name of the data controller and

the chart view ID.

“Custom” charts are generated once only. If a “Custom” chart exists then the code generator will not

make an attempt to generate the chart again. You can safely modified hundreds of the chart control

properties.

114

Standalone ASP.NET Membership Database
Web Site Factory and other premium projects integrate ASP.NET Membership, a built-in way to store

and validate user credentials. You can enable ASP.NET Membership by selecting the membership option

in the code generator project wizard. This will enable numerous membership features including a fly-

over sign-in window, self-service membership enrollment, membership bar, and membership manager.

The configuration of your project will be automatically changed to support the default membership

provider available in ASP.NET. This provider defines a connection string that points to a local instance

of Microsoft SQL Server Express. The provider will automatically connect to the server and dynamically

create a database to maintain users, roles, and other membership features. The database will be

created under ~/App_Data folder of your project.

This works great on a development machine with installed SQL Server Express. There are many situations

when you want to use a standalone membership database or store ASP.NET membership data

structures directly in your own database.

Project wizard offers an option that will enable a standalone membership database configuration. Here

is the screen shot of the project wizard with the standalone membership database enabled.

115

The connection string in the screen shot looks as follows:

Data Source=db;Initial Catalog=Membership;Integrated Security=True;

We have configured the standalone membership database with the name aspnetdb.

You can read more about the configuration process at http://msdn.microsoft.com/en-

us/library/ms229862(VS.80).aspx.

These are the steps that we have taken to create the aspnetdb database:

1. We have started aspnet_regsql.exe from Windows Explorer as shown in picture.

The path to your instance of aspnet_regsql.exe:

C:\%windir%\Microsoft.NET\Framework\<versionNumber>\aspnet_regsql.exe

http://msdn.microsoft.com/en-us/library/ms229862(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms229862(VS.80).aspx

116

2. We have clicked Next button in ASP.NET SQL Server Setup Wizard:

3. We have continued to the next step to configure SQL Server for application services:

117

4. We have entered “.” as a server name and “aspnetdb” as database name.

A few more clicks on the Next button have done the job for us. The database has been created. We have

returned to the project wizard of our code generation project and configure the provider name and

connection string of the newly created membership database.

118

Learn More
Visit our website at: http://codeontime.com/
More Tutorials: http://codeontime.com/Tutorials.aspx
Blog: http://blog.codeontime.com/
YouTube Channel: http://youtube.com/user/codeontime
Download Code On Time Generator at http://codeontime.com/Download.aspx
Get a subscription at http://codeontime.com/Subscriptions.aspx.

http://codeontime.com/
http://codeontime.com/Tutorials.aspx
http://blog.codeontime.com/
http://youtube.com/user/codeontime
http://codeontime.com/Download.aspx
http://codeontime.com/Subscriptions.aspx

